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1 | BACKGROUND

Abstract

Competing theories of dyslexia posit that reading difficulties arise from impaired
visual, auditory, phonological, or statistical learning mechanisms. Importantly, many
theories posit that dyslexia reflects a cascade of impairments emanating from a single
“core deficit”. Here we report two studies evaluating core deficit and multifactorial
models. In Study 1, we use publicly available data from the Healthy Brain Network to
test the accuracy of phonological processing measures for predicting dyslexia diag-
nosis and find that over 30% of cases are misclassified (sensitivity = 66.7%; specific-
ity = 68.2%). In Study 2, we collect a battery of psychophysical measures of visual
motion processing and standardized measures of phonological processing in 106
school-aged children to investigate whether dyslexia is best conceptualized under a
core-deficit model, or as a disorder with heterogenous origins. Specifically, by capi-
talizing on the drift diffusion model to analyze performance on a visual motion dis-
crimination experiment, we show that deficits in visual motion processing, perceptual
decision-making, and phonological processing manifest largely independently. Based
on statistical models of how variance in reading skill is parceled across measures of
visual processing, phonological processing, and decision-making, our results chal-
lenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings
indicate a model where reading skill is explained by several distinct, additive predic-

tors, or risk factors, of reading (dis)ability.
KEYWORDS

deficit, dyslexia, learning, phonological, psychophysics, reading, visual

Despite this heterogeneity, it is broadly accepted that phonologi-

cal awareness (PA) and rapid automatized naming (RAN) are two

Recently, there has been growing adoption of the view that dyslexia,
a reading disability, is probabilistic in nature; children with a family
history of dyslexia are considered “at-risk”, and compensatory skills
such as strong oral language or executive functions may be “protec-
tive factors” (Haft et al., 2016; Hulme et al., 2015; Muter & Snowling,
2009; Pennington, 2006). In this multifactorial framework, most

cases of dyslexia cannot be explained by a single cognitive deficit.

of the strongest—if imperfect—predictors of reading development
(Pennington et al., 2012; Wolf & Bowers, 2000).

In parallel, there is a broad literature characterizing dyslexia as
the consequence of a fundamental deficit that supersedes phono-
logical processing. There are many reports indicating that people
with dyslexia perform poorly in experiments targeting various as-
pects of visual (Stuart et al., 2006; Talcott et al., 2002) and auditory
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processing (Hamaldinen et al., 2013; Noordenbos & Serniclaes,
2015), as well domain general mechanisms such as processing speed
and statistical learning (Gabay et al., 2015; Vandermosten et al.,
2018). These findings have spurred competing theories that explain
dyslexia as the consequence of cascading effects from a fundamen-
tal deficit in the neural systems that process sensory information (ei-
ther visual, auditory, or both; Goswami, 2015), or the ability to make
optimal use of sensory information (e.g., Ahissar, 2007; Ramus &
Ahissar, 2012). Sensory systems are organized in a hierarchy and the
information that is encoded by the eyes and ears is processed in a
sequence of stages in the brain. Generally, these “cascading deficit”
theories contend that deficits in one of the early stages of sensory
processing disrupt the development of phonological processing and,
by this mechanism, disrupt reading development.

Notably, these two branches of research remain largely distinct;
while multifactorial models of reading disability are increasingly
accepted among researchers studying high-level cognitive and lin-
guistic functions, these models largely ignore lower level deficits
in sensory processing. In the sensory-processing literature, on the
other hand, cascading deficit models continue to dominate and
appeals to a “core mechanism” of dyslexia are still commonplace.
Indeed, a PubMed search for the phrase “core deficit of dyslexia”
turns up 118 results from 1986 to the present. Presently, hypoth-
eses positing a core deficit with cascading effects are the focus of
many neuroscientific and psychophysical studies of reading disabil-
ity (Casini et al., 2018; Colling et al., 2017; Frey, Francois, Chobert,
Besson, et al., 2019; Frey, Francois, Chobert, Velay, et al., 2019; Gori
et al,, 2016; Krause, 2015; Lieder et al., 2019; Nicolson & Fawcett,
2018; Vidyasagar, 2019).

A core deficit model is inherently at odds with a multifactorial
model; to accept both models implies that a deficit is not really “core”
in the majority of individuals with dyslexia. Reconciling the many dis-
parate theories of reading disability remains a formidable challenge.
To further compound the difficulty, there are several variants of the
cascading deficit theory—one is the magnocellular deficit theory
of dyslexia, in which a low-level impairment in the motion-sensi-
tive magnocellular pathway of the visual system is said to disrupt
reading skill development (Stein, 2001, 2019; Stein & Walsh, 1997).
Proponents of this theory have argued that sensitivity to transient
sensory information may not be restricted to vision, but could also
affect auditory processing (Stein & Talcott, 1999; Van Ingelghem
et al., 2001; Witton et al., 1998). Hypothetically, auditory insensi-
tivity to rapid cues could diminish an individual's ability to learn the
sounds of their language, and hence develop PA.

Distinct from these sensory processing theories, proponents
of the statistical-learning hypothesis argue that a domain-general
deficit in sensory learning and perceptual decision-making more
broadly could explain why people with dyslexia perform poorly on
myriad psychophysical tasks (Ahissar, 2007; Nicolson & Fawcett,
2018; Ziegler, 2008). It also purports to explain why some children
struggle to learn the mapping between letters and sounds; if sensory
information cannot be effectively used, then acquiring sensitivity to

the regularities of language may be challenging. Despite interest in

Research Highlights

e New evidence that a single-mechanism model of dys-
lexia cannot account for the range of linguistic and sen-
sory processing outcomes in children.

e Contrary to many previous hypotheses, our data sug-
gest that predictors from visual motion processing ex-
periments can influence reading skill independently of
phonological processing.

e We propose an additive risk factor model where differ-
ent aspects of sensory, cognitive, and language function

each contribute independently to reading development.

cognitive deficits at the level of abstracting sensory information, an
exact mechanism is not agreed on; variants include an inability to
appropriately adjust sensory decision-making criteria (Lieder et al.,
2019) and abnormal neural dynamics (Jaffe-Dax et al., 2017; Krause,
2015; Perrachione et al., 2016). Despite differences in the details,
what is consistent across these “non-sensory” theories is that they
posit that a more general deficit disrupts both (1) performance on
experiments requiring a subjects to make a decision based on sen-
sory information and (2) the development of reading skills.

Today, the literature remains inconclusive for several reasons.
First, various cascading deficit models contradict one another as
each posits distinct mechanisms for disrupting phonological pro-
cessing. While a statistical learning model could potentially explain
why so many struggling readers also perform poorly on visual psy-
chophysics, it has not been established whether these two types
of deficits co-occur in the same individuals. The widespread use of
group-level statistics makes it challenging to interpret how many
individuals show a given pattern of low-level deficits, and the few
studies focusing on individual patterns across a battery of diverse
tasks do not encourage much hope for a uniform profile (Amitay
et al., 2002; Ho et al., 2002; Menghini et al., 2010; Ramus et al.,
2003; White et al., 2006).

Perhaps more importantly, it remains challenging to understand
what relationship predictors from psychophysical tasks have with
phonological predictors in determining reading ability—in other
words, whether the influence of low-level sensory processing
mechanisms on reading skill is mediated by phonological process-
ing. Talcott, Witton, et al. (2000) may have best addressed this by
administering a battery of auditory, visual, and phonological tasks,
concluding that a measure of visual motion processing explained
some additional variance in reading skill beyond a measure of PA.
A follow-up study replicated the finding that visual and auditory
psychophysics explained unique variance in both phonological and
literacy skills but did not clarify the fit of a cascading model (Talcott
et al., 2002). Several others have observed evidence that auditory
and visual processing measures influence reading skill separate from
the proposed phonological pathway (Snowling et al., 2019; Stein,
2001; White et al., 2006). Despite these findings, cascading deficit
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models remain at the forefront of the dyslexia debate, particularly
for theories that hold a central role for sensory processing deficits
(reviewed in Goswami, 2015).

There are several reasons why studies such as Talcott et al.'s are
well-cited, but not broadly adopted as conclusive evidence about
sensory processing in dyslexia. In the last two decades, there has
been growing focus on non-sensory mechanisms that may affect
how struggling readers perform on psychophysical tasks—a con-
found that many studies may not have sufficiently accounted for
(Banai & Ahissar, 2004, 2006; Ramus & Ahissar, 2012). Furthermore,
in the multifactorial literature, it is increasingly accepted that at
least two dissociable aspects of phonological processing (PA and
RAN) contribute to reading skill (Pennington et al., 2012; Wolf &
Bowers, 1999, 2000). Previous work only explores the relationship
of sensory measures to a single dimension of PA (Bosse et al., 2007,
Talcott, Hansen, et al., 2000; Talcott et al., 2002; Zoubrinetzky
etal., 2014). As evidence mounts that PA alone is unlikely to explain
many (Snowling, 2008; Snowling & Melby-Lervag, 2016), or even
most (Pennington et al., 2012) cases of dyslexia, it remains worth
considering how individual differences in visual motion processing,
or perceptual decision-making more generally, will fit into changing
conceptions of reading disability.

To separate the contributions of sensory encoding of visual mo-
tion from non-sensory aspects of the decision-making process, we
revisit a widely used measure of visual motion sensitivity (random
dot motion discrimination) with a mathematical modeling approach.
The drift diffusion model (DDM) estimates the generating func-
tion that corresponds to an individual's pattern of responses and
reaction times on a task (Ratcliff & McKoon, 2008), and has been
used to understand how cognitive mechanisms associated with
aging (Ratcliff, Thapar, et al., 2004), Attention Deficit Hyperactivity
Disorder (ADHD) (Huang-Pollock et al., 2017), and development
(Ratcliff et al., 2012) manifest in psychophysical task performance.
The model has been extensively used to describe decision-making
on the motion discrimination task (Gold & Shadlen, 2007; Palmer
et al., 2005; Shadlen et al., 2013), and validated by electrophysio-
logical work in non-human primates (Shadlen & Newsome, 2001). As
such, the DDM provides a rigorous way to explore the intersection
of sensory integration and decision-making in relation to reading
skill. To date, this model has only been used to study reading disabil-
ity in two studies of lexical decision-making (Ratcliff, McKoon, et al.,
2004; Zeguers et al., 2011).

Here we present two studies testing core-deficit and multifac-
torial models of dyslexia; in Study 1, we asked how well measures
of phonological processing (PA and RAN) can account for diagnoses
of reading disability. For maximal statistical power, and to ensure
consistency in diagnostic criteria, we utilize a large public dataset
of hundreds of school-aged children who have been undergone a
standardized assessment by a panel of clinicians. In a core-deficit
model of dyslexia with a central phonological component, we would
hypothesize that most children would be well-classified according
to standard phonological processing measures. Alternatively, the

extent to which dyslexia occurs in children with high scores on

phonological measures indicates that additional, unmeasured factors
are important for understanding those children's reading difficulties.

In Study 2, we explore relationships between measures of pho-
nological processing (PA and RAN), visual motion processing and
perceptual decision-making, estimated with the DDM (N = 106
school-age children tested in our lab). With this dataset, we first in-
vestigate patterns of correlations between visual processing, cog-
nitive and reading measures, and then test the hypothesis that a
multifactorial model, in which both phonological and visual process-
ing factors contribute independently to reading skill, outperforms

any of the core-deficit models.

2 | METHODS: STUDY 1

2.1 | Participants

The Healthy Brain Network dataset is provided to the public by
the Child Mind Institute. At the time of writing, the released data-
set included 1814 subjects. From this dataset, we identified 124
school-aged individuals (ages 5-17) in the urban New York City
region who had been diagnosed with “Specific Learning Disorder
with Impairment in Reading” by a panel of clinicians affiliated with
the Child Mind Institute and also had standardized scores on the
Comprehensive Test of Phonological Processing (CTOPP-2; Mitchell,
2001) available. The diagnoses were made according to the 5th edi-
tion of the Diagnostic and Statistical Manual for Mental Disorders
(though specific criteria are not provided; American Psychiatric
Association, 2013).

We also identified 119 individuals who were similarly assessed
and given no diagnosis of any kind. Due to the large number of par-
ticipants available, we were able to create nonverbal IQ matched
control groups on the basis of the Wechsler Intelligence Scale for
Children's Matrix Reasoning scaled score (Dyslexia: n = 110; Control:
n = 105). These groups did not significantly differ in terms of non-
verbal 1Q (t(208.85) = -1.0668, p = 0.287) or age (t(212.65 = 1.041,
p =0.299). The Healthy Brain Network dataset can be accessed here:
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_netwo
rk/index.html

2.2 | Measures

We analyzed two standardized measures administered to all children
in the Control and Dyslexia groups: the CTOPP-2’s Elision subtest
and the RAN Composite score. These age-normed measures give an
estimate of PA and RAN respectively.

2.3 | Analysis

To assess the separability of the Control and Dyslexia groups on the

basis of two measures of phonological processing, we used quadratic
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discriminant analysis (QDA). Using the QDA function from the MASS
library for R, we fit a model with group as the dependent variable
and PA and RAN as independent variables. To avoid overfitting, we
report results from leave-one-out cross validation.

3 | RESULTS: STUDY 1
3.1 | Predicting dyslexia from phonological
measures

We first assessed the phonological core deficit model by quantifying
the extent to which deficits in PA, RAN, or both differentiate indi-
viduals with dyslexia from control subjects with typical reading skills
(Figure 1). A classifier trained with leave-one-out cross validation on
both features could correctly classify 67.4% (+6.3%; 95% confidence
interval) of individuals with a specificity of 68.2% and a sensitivity
of 66.7%. To be certain that this does not reflect the limitations of
a specific classifier model (QDA), we also assessed a support vector
machine model and found no improvement in classification accuracy.

The classifier results are undoubtedly in alignment with the ex-
tensive literature on phonological processing; PA and RAN are both
meaningful predictors of reading skill. As is clear in Figure 1a,b, there
are pronounced group-level differences on both measures; dyslexic
and control groups differ by nearly a standard deviation on both PA
and RAN measures. A dis-attenuated estimate of Cohen's d, account-
ing for the published test-retest reliability of each measure, was 1.00
for PA (unadjusted d = 0.93) and 0.87 for RAN (unadjusted d = 0.81).
Yet, these two measures alone fail to account for many cases of dys-
lexia—in the Healthy Brain Network (HBN) sample, 33 out of 110

cases (Figure 1c). For either measure, there would be approximately
50% overlap between Control and Dyslexic groups even when ac-
counting for measurement reliability, and many individuals with ap-
parently typical reading abilities would be erroneously predicted to
be dyslexic based on their PA and RAN scores alone (low specificity).

In the original formulation of the phonological core deficit model
(e.g., Stanovich, 1988), PA is purported to be a more powerful pre-
dictor of reading disability in early childhood, so it may be unsurpris-
ing that the model's accuracy is not higher in a sample containing
teenagers. We therefore repeated the analysis on two subsets of the
sample: 62 children between ages 5 and 8 (n = 29 with a Dyslexia
diagnosis), and 153 children aged 8-17 (n = 81 with a Dyslexia di-
agnosis). The classifier trained on the younger cohort obtained an
accuracy of 69.4% (+11.7%) while the classifier trained on the older
cohort reached 66.7% (+7.5%). We ran a second analysis treating age
as a continuous predictor and we used logistic regression on our en-
tire sample to model dyslexia diagnosis (present or absent) with main
effects of age, PA, and the interaction of the two. The interaction
term was not significant (5 = -0.007, SE = 0.0243, p = 0.767), indicat-
ing that the predictive value of PA and RAN was roughly consistent
across the sampled age range.

Finally, we tested a direct measure of pseudoword reading skill
provided in the HBN dataset (the age-normed Weschler Individual
Achievement Test Pseudoword subtest) as the dependent variable
in a linear model. The interaction of age and PA was again not signifi-
cant (f=-0.0322, SE = 0.116, p = 0.782). Similarly, the interaction of
age and RAN was not significant (g = -0.0357, SE = 0.019, p = 0.070).
As such, our finding that standard phonological measures are mod-
est, yet imperfect, predictors of dyslexia in the HBN dataset is un-
likely to be an artifact of the age range of the sample.

(@) (o) ©
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Group [® Dyslexic [8] Control

FIGURE 1 (a,b) Density plots for phonological awareness (Comprehensive Test of Phonological Processing [CTOPP] Elision) and rapid
automatized naming (CTOPP Rapid Symbolic Naming Composite) in the Healthy Brain Network dataset in two subsets. The Dyslexia group
(blue) consists of 110 school-aged children diagnosed with dyslexia by a panel of clinicians. The red density plot represents an age- and
nonverbal IQ-matched control group of 105 children identified as having no psychiatric or neurological diagnoses by the same panel. (c) The
decision boundary of a quadratic discriminant analysis trained on the entire dataset is shown. Dots represent observations from the dataset
with slight jitter added for visibility of overlapping points
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4 | STUDY 2

Having demonstrated that phonological predictors alone are insuf-
ficient to accurately distinguish many cases of dyslexia from typical
reading (Study 1, HBN data), we next consider the contribution of
visual motion processing to reading abilities. Do visual motion pro-
cessing difficulties typically coincide with phonological impairments,
as would be expected in a cascading model of reading disability? Or
are they a separable contributor to reading outcomes which explain
cases of dyslexia that were not captured by the phonological core
deficit model? Here we present the results of the motion discrimina-
tion experiment (conducted in the lab) in 106 school-aged children,

including 42 individuals who meet our criteria for dyslexia.

4.1 | Methods

411 | Participants

A total of 119 native English-speaking school-aged children aged
8-12 were recruited. Children without histories of neurological or
sensory disorders were recruited from a database of volunteers
in the Seattle area (University of Washington Reading & Dyslexia
Research Database; http://ReadingAndDyslexia.com). Parents and/
or legal guardians of all participants provided written informed
consent under a protocol that was approved by the University of
Washington Institutional Review Board. All subjects demonstrated
normal or corrected-to-normal vision.

Five subjects did not complete the psychophysics. An additional
two subjects did not show evidence of performing above chance
(>60.5% accuracy at any of the four stimulus coherence levels) and
were excluded from analysis. A further six subjects did not produce
enough usable data to fit the DDM (no more than 15% responses
outside of the acceptable response time window from 200 ms to
10 s). This left 106 subjects with usable data. The average age of
these participants was 9.9 years (SD = 1.3).

4.1.2 | Measures of literacy and cognitive skills

Several standardized measures were used to assess foundational
literary and cognitive skills in our participants. All participants com-
pleted the subtests of the Woodcock-Johnson IV (Schrank et al,,
2014) required to estimate the Basic Reading Score (WJ-BRS), Letter
Word Identification, and Word Attack. To obtain the test of word
reading efficiency (TOWRE) Index, participants completed the Sight
Word Efficiency and Phonemic Decoding Efficiency subtests of the
TOWRE-2 (Torgesen et al., 2011). Phonological processing was as-
sessed with the CTOPP-2 (Mitchell, 2001). A PA score was obtained
as a composite of the Elision, Blending Words, and Sound Matching
subtests. A RAN score was obtained as a composite of the Rapid
Digit Naming and Rapid Letter Naming subtests. Additionally, a

Phonological Memory composite score was obtained as a composite

Bt

of the Memory for Digits and Nonword Repetition tasks. Lastly, all par-

ticipants completed the Weschler Abbreviated Scale of Intelligence-II
(Wechsler, 2011) Vocabulary and Matrix Reasoning subtests. A com-
posite of these two scores yielded the Full Scale-2 composite. The
Matrix Reasoning score was used as a measure of nonverbal IQ in the

following analyses.

4.1.3 | Definition of dyslexia and control groups

We recruited participants whose reading abilities ranged from pro-
foundly impaired to highly proficient. Since reading abilities fall on a
continuum (Shaywitz et al., 1992), and because we could not ensure
that children in our area with parental reports of a diagnosis were di-
agnosed in a standardized way, we treat reading ability as a continuous
measure in our main statistical analyses. For the purpose of comparison
with other studies, we also include group-level analyses (Dyslexic vs.
Control). For sake of brevity, the complete group analysis is described
in Supplementary Materials and we refer to key findings from this com-
plimentary analysis in the main text where appropriate. Group labels
were assigned on the basis of the composite WJ-BRS and TOWRE
Index. As both the WJ-BRS and TOWRE Index are scored on the same
standardized scale, a composite reading skill measure was created by
averaging the two scores for each participant. The average reading
score overall was 92.0 (SD = 19); note that this was significantly lower
than the expected population mean of 100 (t(105) = -4.31, p < 0.001),
indicating that poor readers were oversampled in our recruitment. The
“Dyslexic” group comprised participants whose reading score fell 1 SD
or more below the population mean (reading score <85); the “Control”
group had reading scores above this cutoff and had never been diag-
nosed with a reading disability. There were 43 subjects in the Dyslexic
group and 48 in the Control group. A remaining 15 subjects were not
well-described by either label (e.g., reading score >85 but an indica-
tion of a dyslexia diagnosis) so were not included in the group compari-
sons. As in several other studies (O'Brien et al., 2018; Pennington et al.,
2012), we did not 1Q-match these groups, but rather controlled for
nonverbal 1Q explicitly in our statistical analyses. Additionally, ADHD
diagnosis was not grounds for study exclusion because of the high co-
morbidity between ADHD and dyslexia. The presence of ADHD was
entered into our linear modeling analyses as a covariate. Relationships
between demographic characteristics, phonological, IQ measures, and
reading skill are presented in Tables S1 and S2.

4.1.4 | Psychophysics stimuli and apparatus

Participants were tested with a motion discrimination paradigm, a
single-interval task in which participants are asked to label the over-
all direction of motion (left or right) for a patch of random-dot motion
stimuli generated with varying coherence levels. When coherence is
at 0%, participants perform at chance levels, as there is effectively
no signal. Also, as the coherence is increased, so too increases the

salience of perceived motion to the left or right. For further details
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of the stimuli and testing apparatus, please see Supplementary
Methods.

4.1.5 | Psychophysics procedure

Each session comprised six experimental blocks. For each sub-
ject, three blocks of 50 stimuli were tested with a brief break in
between. This was followed by a longer break to collect reading,
phonological and 1Q measures, and followed by the final set of
three blocks. At the beginning of the session, subjects completed
10 practice trials comprising high coherence motion (60%-100%).
Subjects were allowed to repeat the practice up to three times,
until they got at least 70% correct. All participants were able to
do this.

Stimuli were presented at five coherence levels: 6%, 12%,
24%,48%, and 100%. However, early in the study we realized that
many subjects (unrelated to reading ability) found 100% coher-
ence difficult and reported varying visual percepts. Performance
typically declined for 100% coherence stimuli compared to 48%
coherence. Therefore, we analyzed only the range of stimulus co-
herence levels where performance was generally monotonic, from
6% to 48%. Each stimulus coherence level was presented 60 times
for a total of 300 presentations, 240 of which were included in
the analysis.

Each trial started with a fixation mark at the center of the
display. After 500 ms, random-dot motion stimuli were displayed
until the subject made a keypress (or until 10 s had elapsed).
Subjects pressed right or left arrow keys on a standard keyboard
to report motion direction. The fixation mark was turned off when
the response was made, and visual and auditory feedback was
given to indicate correct and incorrect responses. The experiment
did not proceed until subjects reported the motion direction. The
inter-trial interval was 1 s, and after this interval the fixation mark
re-appeared at the center of the display to indicate the beginning

of the next trial.

4.1.6 | Driftdiffusion model

To decouple sensory encoding of visual motion from the process
of forming and executing a binary decision, we fit the DDM to
each subject's distribution of behavioral responses and reaction
times. In the DDM for a two-alternative forced-choice judgment, it
is assumed that an observer samples sensory input at discrete mo-
ments in time, and that these samples are accumulated in a noisy
decision variable that represents the integrated evidence over the
course of the trial (plus internal noise). When this decision vari-
able reaches a threshold, the observer initiates a decision. The
DDM therefore separates the encoding and evaluation of sensory
information (which drives changes in the decision variable) from
non-sensory processes, such as the magnitude of the threshold for

triggering a decision and the trial-to-trial variability in the decision

process (for a detailed review of the DDM, see Ratcliff & McKoon,
2008; Wiecki et al., 2013).

For further details of the DDM implementation, outlier detec-
tion, and modeling procedure for testing hypotheses around DDM

parameters, see Supplementary Methods.

4.2 | Results: Study 2
4.21 | Visual motion processing and
reading abilities

Before we model the respective contributions of sensory and de-
cision processes to task performance, it is important to establish
that task performance is related to reading skill. We confirmed that
reading skill was related to reaction time; using model selection,
we identified that the most parsimonious model of median reac-
tion time included main effects of stimulus coherence (5 = -0.173,
SE = 0.00898, p < 1 x 107%), age (§ = -0.059, SE = 0.0214,
p < 1 x 107", and reading skill (8 = -0.006, SE = 0.00149,
p = 1.15 x 107% with a random effect of subject (Table $4; Figure
S1). Accuracy was not significantly related to reading skill (Table
S5), likely reflecting the fact that the motion stimuli remained on
the screen until the subject provided a response. Notably, we also
observed that the ratio of correct to error median response times
within each subject was significantly associated with reading skill
(p =-0.00444, SE = 0.00224, p = 0.0497), with poor readers show-
ing an increased tendency to make “fast errors” relative to correct
response times (Table Sé; Figure S2). The presence of fast errors is
notable because this phenomenon is typically associated with non-
sensory mechanisms, including a tendency to initiate guesses be-
fore an optimal amount of evidence is considered (Smith & Ratcliff,
2004). Thus, raw reaction time data indicated that children with low
reading scores were not only less efficient than control subjects in
processing visual motion, but also showed a qualitatively different

pattern of responses.

4.2.2 | Less efficient visual motion processing in
children with low reading scores

After fitting the DDM to each subject's behavioral responses, we
investigated whether there was a relationship between the drift rate
parameter, v, and reading skill. Drift rate models the efficiency with
which information is extracted and integrated from incoming sen-
sory signals. For example, drift rate monotonically increases with
stimulus coherence level (= 0.719, SE = 0.0249,p < 1 x 107") indi-
cating the visual system can more efficiently extract motion infor-
mation when stimulus noise is low. If individuals with dyslexia do not
have any difficulties with encoding visual information, as predicted
by the statistical learning hypothesis, we would expect drift rate to
be uncorrelated with reading skill once covariates like 1Q, age, and

ADHD diagnosis are controlled for. Note that in our analyses, we
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treat reading as a continuous measure, but we also provide analy-
ses where reading disability is treated as a categorical variable in
Supplementary Analysis 1 (Tables S7-59). Details of the model selec-
tion procedure are provided in the Methods.

Individual estimates of drift rate are shown in Figure 2. Drift
rate was best modeled by a main effect of reading skill, a main ef-
fect of stimulus coherence, a main effect of age, and the interac-
tion of reading skill and stimulus coherence (Table 1). Our results
therefore indicate that drift rate increases with stimulus coherence,
as expected, as well as age and reading skill. Furthermore, there is
a stronger relationship between reading skill and drift rate at high
stimulus coherence levels, which is likely a consequence of the fact
that estimates of drift rate are more reliable at higher coherence lev-
els (see Methods).

To estimate the effect size of the relationship between reading
skill and drift rate, we considered a linear model of reading skill as
a function of participant's average drift rate; the selected model of
reading skill contained main effects of mean drift rate (p = -0.262,
SE = 0.009, p = 0.006) and nonverbal IQ (3 = -0.488, SE = 0.008,
p =520 x 1078). In this model, the partial r? associated with mean
drift rate was 0.074; thus the unique contribution of this index of vi-
sual motion processing to explaining variance in reading skill is likely

(@)

A evidence _ v
A time

N |

(b) 6% 12%

=

modest. Similarly, with reading skill treated as a group-level vari-
able, Cohen's d was 0.42. As such, our data do not provide evidence
that deficits in motion processing occur in most struggling readers,
though there is a significant relationship between motion processing
and reading ability.

As to the question of whether drift rate explains additional
variance in reading skill beyond phonological processing, con-
sider the subset of readers in our sample with above average PA
(PA scores 2100). Within this subgroup of 38 participants, 9 chil-
dren (23.7%) met our criteria for dyslexia despite having high PA,
and reading skill was significantly correlated with mean drift rate
(r=0.49, p =0.0019; see Figure 3). The relationship between read-
ing skill and mean drift rate in the high PA subgroup remained sig-
nificant when controlling for RAN and nonverbal IQ ( = -0.164,
SE = 0.072, p = 0.0279). For these individuals, knowing drift rate
explains 24% of variance in reading skill. In readers with aver-
age-or-better PA, it appears that individual differences in visual
motion processing distinguish between struggling and expert
readers. Interestingly, a different pattern emerged in a subgroup
of 28 subjects with RAN scores 2100: for these participants, the

correlation between reading skill and drift rate was not significant
(r=0.03, p =0.320).

I:l Dyslexic

evidence

time

24% 48%

61 r=0.19, p=0.048 r=0.29, p=0.003

Drift Rate (v)

r=0.26, p=0.009
.

r=0.25, p=0.009
.

60 80 100 120 60 80 100 120
Reading Score

60 80 100 120 60 80 100 120

FIGURE 2 (a) A schematic of the drift diffusion model (DDM) with reaction time distributions (at 12% coherence) from the control

and dyslexic groups imposed above. The red and blue lines in the schematic show how differences in drift rater predict differences in the
reaction time distributions. The DDM model was fit separately to each individual's data and the average drift rate parameter for the dyslexic
and control groups is shown in the bar plot in panel a (+1 SE). (b) The relationship between estimated drift rate and reading skill at four
different stimulus coherence levels. Lines are best fit regression lines and shaded regions are confidence intervals
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TABLE 1 Selected model of drift rate

B SE p
Intercept 1.534 0.0620 <1x107
Stimulus coherence 0.719 0.0249 <1x107%
Age 0.268 0.0623 3.878x107°
Reading skill 0.173 0.0623 6.605 x 1073
Stimulus coherence: 0.0869 0.0249 7.04 x 107

Reading skill

r =0.49, p = 0.0019
140-
= 1201
X
()]
(@]
=
k
100
o
: S
80 2
S
&
. 80 100 120
60 ° ' ' PA
- 0 1 2 3

Average drift rate

FIGURE 3 The relationship between drift rate and reading

skill in a subset of individuals with good phonological awareness.
Average drift rate is calculated by averaging each individual's z-
scored drift rate estimates at each stimulus coherence level. Inset: a
scatter plot indicating in black which subset of the study sample is
included in the “good phonological awareness” group

4.2.3 | Decision-making parameters are related to
reading skill and independent of visual processing

We next consider the predictions of non-sensory hypotheses by an-
alyzing the relationship between parameters of the DDM that index
non-sensory components of the decision-making process and read-
ing skill (Figure 4a-d). For each parameter of interest, we modeled
reading skill as a function of the parameter plus the covariates and
report the results of model selection. If poor readers struggled with
the task only because of differences in visual processing, we would
expect no parameters besides drift rate (and s ) to be useful predic-
tors of reading skill.

To the contrary, the parameter s, was significantly correlated
with reading skill and, after model selection, was retained as a pre-
dictor (Figure 4a). The selected model contained main effects of
s, (f=-0.798, SE = 0.281, p = 0.005) and nonverbal 1Q (§ = 0.483,
SE = 0.083, p = 7.05 x 107%). The parameter s, represents the

trial-to-trial variability in the relative amount of evidence required
to initiate a judgment; individuals with high s, values are prone to
making fast errors. Indeed, we confirmed that the ratio of median
correct response times to error response times within a subject was
correlated with the DDM estimation of s, (r = 0.452, p = 1.44 x 1079).

Similarly, we observed that the parameter representing the
threshold of evidence required to initiate a decision, a, had a modest
but significant correlation with reading skill (5 = -0.136, SE = 0.0632,
p = 0.0329), indicating that worse reading skill is associated with
employing a more conservative criterion for initiating a perceptual
decision (Figure 4b). After model selection, a and nonverbal IQ
were retained as selectors of reading skill (8 = -0.237, SE = 0.130,
p = 0.072; = 0.490, SE = 0.085, p = 8.79 x 107%).

Lastly, we examined parameters that represent the lumped con-
tributions of all non-decision processes to reaction time, including
the time necessary to encode a visual stimulus and execute a motor
response. Because some individuals with dyslexia are known to
have slower processing speed (Pennington et al., 2012; Peterson &
Pennington, 2015), we might expect this time to be longer in chil-
dren with worse reading skills. Indeed, the parameter t representing
an individual's average non-decision time showed an overall nega-
tive relationship with reading skill; model selection retained both t
(p = -1.031, SE = 0.489, p = 0.0375) and nonverbal IQ (s = 0.518,
SE = 0.841, p = 1.50 x 1078 Figure 4c). We also tested a model
of reading skill as a function of a parameter modeling trial-to-trial
variability in non-decision time, s, (Figure 4d). Model selection re-
tained both s, (# = -0.960, SE = 0.266, p = 0.0004) and nonverbal IQ
(8=0.508, SE = 0.0807, p = 7.89 x 107%).

We have so far identified several parameters of the DDM in-
dexing both visual and non-sensory processes that show univariate
associations with reading skill (even after covariates for age, non-
verbal 1Q, and ADHD diagnosis are considered). We next consid-
ered the extent to which these parameters were correlated with
one another, potentially indicating clusters of parameters that index
a common underlying mechanism (Figure 4e). As expected, we
noted strong correlations between the four drift rate parameters.
None of the drift rate parameters were significantly correlated with
any non-sensory parameters after correction for multiple compar-
isons. There were moderate correlations between three non-sen-
sory parameters, s,, t, and s, (s, and t: r = 0.685, p = 9.75 x 107", t
and s,: r = 0.335, p = 0.0005; s, and s,: r = 0.386, p = 5.03 x 1079).
These three parameters largely contribute to modeling the leading
edge of the reaction time distribution—s, allows for the presence of
relatively fast errors, t shifts the response time distribution along
the time axis, and s, allows for responses before an individual's av-
erage response time. Finally, we noted that the parameter a was
uncorrelated with any of the other parameters. Hierarchical clus-
tering (Ward's method, Ward, 1963) indicated that the correlation
matrix was consistent with three clusters of parameters: a cluster
consisting only of a, another consisting of the s, t, and s, and a
final cluster including all four drift rates and s,. This suggests that
the DDM captures several distinct mechanisms underlying visual

encoding and perceptual decision-making. The correlation matrix of
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FIGURE 4 (a-d) The relationship between reading score and four non-sensory parameters of the drift diffusion model (DDM). (a) decision

threshold g, (b) variability in drift process starting point s, (c) non-decision time t, and (d) variability in non-decision time s,. (e) Correlations
between parameters of the DDM. Boxes indicate hierarchical clustering results (Ward's method) and stars indicate significant correlations

after Holmes-Sidak correction for multiple comparisons: *p < 0.05, **p < 0.01, and ***p < 0.001. (f) Group comparisons for the three

composite measures based on hierarchical clustering of the DDM parameters: d :

comp: COMPosite of s, s, and t, the a parameter, and v, -

composite of the four drift rate parameters and s . Note that all three composite parameters are z-scored. Error bars represent 1 SEM

all DDM parameters and three hierarchical clusters are diagrammed

in Figure 4e.

4.2.4 | Visual and non-sensory predictors both
explain reading outcomes

So far in our analysis, there seem to be several separate profiles of
performance on the motion discrimination task that are associated
with low reading skill: (1) reduced ability to encode and integrate
visual information, (2) setting a more conservative decision crite-
rion, and (3) generally more variability in terms of the time taken
to gather evidence and/or execute a decision. The lack of correla-
tions between many of the DDM parameter estimates indicates
that individuals who display a deficit in terms of one process (e.g.,
visual encoding), are not necessarily the same individuals who per-
form abnormally in terms of another process (e.g., decision-mak-
ing), and that profiles of performance are variable across subjects.
To test whether each dimension of task performance is indeed a
unique contributor to a model of reading skill, we employed a lin-
ear modeling approach (with reading skill as the dependent vari-
able). To simplify the number of parameters, we introduce several
composite measures based on our clustering analysis (Figure 4e).
comp’ by tak-

ing the first principal component of the four drift rates and s, A

Drift rate is summarized as a composite measure, v

TABLE 2 Selected model of reading skill from drift diffusion
model parameters

B SE p
Intercept 0.972 0.351 0.00663
Veomp -0.274 0.0778 6.56 x 107
a -0.339 0.119 0.00548
Aeomp 0.291 0.0755 2.10x 107
Nonverbal 1Q 0.0453 0.0766 4.68x107°

second composite measure d was derived from the first princi-

com
pal components,, t,ands,, whicrpl we expect represents aspects of
variability in the decision-making process.

We performed model selection, starting with the full model with
reading score as the dependent measure and all hypothesized DDM
parameters and the three covariates (vcomp, d
ADHD diagnosis, and age) as predictors. The selected model re-
tained all three predictors from the DDM and nonverbal IQ (Table 2).

This result confirms that non-sensory mechanisms explain additional

comp @ Nonverbal 1Q,

variance in reading skill once the quality of visual encoding is ac-
counted for. As such, even within this single psychophysical task,
there are multiple non-correlated dimensions of variance contrib-
uting to the pattern of responses observed in individuals with dys-
lexia—the ability to extract evidence from visual information, choice

of decision threshold, and trial-to-trial variability in behavior.
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4.2.5 | Do sensory deficits have cascading effects?

To address the question of whether performance on the motion dis-
crimination task is related to reading skill by way of phonological pro-
cessing, or in addition to it, we explore a series of linear models. We
first test the hypothesis that predictors from the psychophysical task
do not explain additional variance in reading skill once phonological
processing is accounted for. We again modeled reading skill as a func-

tion of composite measures from the DDM—v d and a—as

comp’ “‘comp’
well as two phonological processing measures, PA and RAN, and
the three covariates. Model selection retained all predictors except
ADHD diagnosis and age (Table 3). Correspondingly, an ANOVA F-test
comparing the selected model to a reduced model with only PA, RAN,
and nonverbal IQ confirmed that adding predictors from the DDM ex-
plained variance in reading skill above and beyond the reduced model
(F(100, 97) = 4.0438, p = 0.00936). The reduced model also had a
higher Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) (selected model AIC = 794.4 and BIC = 813.9; reduced
model AIC = 800.7 and BIC = 815.6). Because ordinary least squares

TABLE 3 Selected model of reading skill

B SE [
Intercept -0.554 0.256 0.0331
Veomp -0.120 0.0601 0.0491
a -0.193 0.0871 0.0293
deomp 0.142 0.0570 0.0140
Nonverbal 1Q 0.335 0.0602 2.26 x 107
CTOPP PA 0.172 0.0653 0.0097
CTOPP RAN 0.521 0.0582 2.49 x 107

Abbreviations: CTOPP, Comprehensive Test of Phonological Processing;
PA, phonological awareness; RAN, rapid automatized naming.

models may be poorly affected by multicollinearity, we also applied
lasso regression with 10-fold cross validation (Friedman et al., 2010),
and confirmed the same finding (modeling approach is provided in
Figures S3 and S4; Table S10). Lastly, mediation analyses revealed, at
most, a partial mediation effect for PA on the relationship between
DDM parameters and reading skill (see Supplementary Analysis 2).
From these analyses, we can confirm that all three predictors from
the DDM are useful for explaining differences in reading skill in addi-
tion to traditional measures of phonological processing.

4.2.6 | Multiple dimensions of skilled and
disabled reading

Contrary to theories that seek to discover a unified deficit that char-
acterizes reading difficulties, we have established that visual motion
processing is separable from non-sensory aspects of perceptual de-
cision-making, and both factors account for independent variance in
reading skill. To speak to the question of how many separable under-
lying factors predict reading skill, we next apply exploratory factor
analysis (EFA), an unsupervised learning approach for identifying the
number, and characteristics, of latent factors that explain the correla-
tion structure of a dataset (Costello & Osborne, 2005; Ferguson &
Cox, 1993; Kline, 2013). We applied EFA to characterize the space
of the DDM parameters, nonverbal 1Q, and the six subtests of the
CTOPP. An analysis of the eigenvalues of the correlation matrix in-
dicated that four latent factors were warranted (i.e., the first four
eigenvalues >1, see scree plot in Figure S5), and this was confirmed
by parallel analysis (Hayton et al., 2004). The four factors are shown
in Figure 5 with orthogonal varimax rotation. The total proportion
of explained common variance by the four-factor model was 55.8%
(Factor 1: 20.3%, Factor 2: 14.2%, Factor 3: 10.7%, Factor 4: 10.6%).
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FIGURE 5 Factor loadings for the orthogonal four-factor model are shown in the table; shading corresponds to absolute value of the
loading. The scatterplot shows the correspondence between true (measured) and predicted reading skill using a linear model with all four
factors as predictors. Each point was predicted using leave-one-out cross-validation (LOO-CV). Color indicates whether that point was
more accurately predicted by the single-factor model or the full model with all four factors. Green points had a lower squared error when
predicted by the four-factor model, and purple points had a lower squared error when predicted by the single-factor. Gray points had similar
prediction accuracy for both models. CTOPP, Comprehensive Test of Phonological Processing
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The loadings of the first factor are dominated by the four drift
rate parameters, whereas the second factor is loaded most heavily
by nonverbal IQ and four of the CTOPP subtests. The remaining two
subtests, Rapid Digits and Rapid Letters, load onto their own factor
(in line with the double-deficit hypothesis, Wolf & Bowers, 1999). An
additional factor appears to reflect non-decision time and variability
parameters of the DDM s, s,, and t. Notably, the evidence threshold
parameter, a, is not particularly associated with any factor; 87% of
variance in a is unexplained by this model.

Factor analysis largely conforms to the intuitions we have built
so far from linear models: drift rate, although correlated with phono-
logical processing and perhaps partially mediated by it, is identified
as a separate factor. Drift rate and the non-sensory parameters of
the DDM are modeled as observations from two distinct factors.
It is likely that a is representative of an additional factor, consistent
with its lack of correlations with any other parameter of the DDM
(note that without multiple estimates of a, EFA cannot estimate
measurement noise and consequently does not assign it to a new
factor). Critically, each of these four factors was significantly related
to reading skill consistent with the interpretation that, rather than
representing a single underlying construct, there are multiple, inde-
pendent cognitive and sensory dimensions characterizing individual
differences in reading skill (Figure 5). A linear model of reading skill
as a function of scores on the four factors indicated that all four ef-
fects were significant (see coefficients in Figure 5). Furthermore, the
full model also had a lower AIC (full model AIC = 798.8, single factor
model AIC = 869.9) and BIC (full model BIC = 814.6, single factor
model BIC = 877.8).

In addition to standard model selection, we compared the accu-
racy of the four-factor model on predicting held-out observations
to the accuracy of a single-factor model. Using leave-one-out cross
validation, the four-factor model explained 63.9% of variance in
reading skill for the held-out points. The single factor model used
only Factor 2, which is largely a composite of the CTOPP measures
of PA, phonological memory, and nonverbal IQ. This model only ex-
plained 27.4% of variance in reading skill for held-out observations
(Figure S6), indicating the necessity of considering multiple (at least
four) underlying dimensions in order to accurately predict individual
differences in reading ability.

5 | CONCLUSIONS

Our results demonstrate that (1) a core phonological deficit model
is insufficient to account for many cases of developmental dyslexia,
(2) abnormal performance on the motion discrimination experiment
in children with dyslexia cannot be ascribed to a uniform profile of
either visual processing or non-sensory deficits, (3) both visual and
non-sensory mechanisms explain variance in reading skill above and
beyond phonological processing, (4) the correlational structure of
cognitive, linguistic, and visual measures explored here is consist-
ent with, at minimum, four underlying factors, (5) each of these four

factors accounts for unique variance in children's reading abilities. In
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sum, our results are not consistent with models of dyslexia that only
consider phonological processing or models in which impairments in
visual processing or decision-making primarily affect reading devel-
opment via a disruption of phonological processing. Instead, dyslexia
should be conceptualized as a disorder that may arise from several
distinct loci.

Our work is consistent with that of Pennington and colleagues,
which has capitalized on large samples to demonstrate that indi-
viduals with dyslexia have a heterogeneous profile of cognitive and
linguistic impairments (Pennington, 2006; Pennington et al., 2012;
Peterson & Pennington, 2015). The present work extends this per-
spective to address the role of sensory processing and perceptual
decision-making deficits in dyslexia.

Several preceding studies have attempted to investigate mul-
tiple candidate mechanisms of dyslexia, including auditory, visual,
and motor processes. Our work generally conforms to the find-
ing of at least four such studies (Ho et al., 2002; Menghini et al.,
2010; Ramus et al., 2003; White et al., 2006) that show a het-
erogenous pattern of deficits present in struggling readers. For
example, Talcott et al. collected several psychophysical measures
in 350 school-aged children and, like us, found that each explained
a small, but unique, percentage of variance in reading skill (Talcott,
Witton, et al., 2000). Valdois and colleagues have argued that defi-
cits in visual attention are independent of phonological process-
ing deficits and represent a unique cause of dyslexia (Bosse et al.,
2007; Lobier & Valdois, 2015; Lobier et al., 2012; Zoubrinetzky
et al., 2014), but this point remains contentious for a variety of
reasons (Saksida et al., 2016).

To our knowledge, the present work is the first use of the DDM
to model motion discrimination in relation to reading skill. Our re-
sults from Study 2 serve as a partial validation of two seemingly
contradictory theories: some poor readers show a pattern of perfor-
mance consistent with reduced ability to extract information from
incoming visual signals, while others are better described as having
normal visual processing but altered decision-making characteristics
(including, as the propensity to make fast errors reveals, more tri-
al-to-trial variability in the relative amount of evidence needed to
initiate a decision). It is interesting to note that studies of lexical de-
cision-making have revealed similar differences in the decision-mak-
ing process (elevated evidence criteria) suggesting a potential link
between performance on simple perceptual judgments (i.e., motion
discrimination) and altered lexical access during reading (Zeguers
et al.,, 2011). Neither the statistical learning hypothesis, which would
argue that sensory deficits are not meaningful, nor the magnocellu-
lar deficit hypothesis, which would fail to predict the non-sensory
parameters of the DDM relate to reading skill, entirely match our
results. Yet we see evidence for both visual- and non-sensory dif-
ferences in our sample. In line with these findings, we propose that
each mechanism should be reconceptualized as a dimension of risk,
as opposed to a single cause, of reading difficulties.

As a correlational study, our results cannot validate any partic-
ular causal mechanism. It is possible that each factor represents

clusters of symptoms that indicate underlying abnormalities in a
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processing system, but are not a direct cause of reading difficul-
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ties themselves. For example, the fact that differences in visual
motion processing predict unique variance in reading skill does
not necessarily mean that, for those individuals, poor perception
of visual motion is the cause of their reading difficulty. Instead,
measurements of task performance may be a proxy for the fidelity
with which the visual system constructs a sensory representation
of a noisy stimulus (Sperling et al., 2005, 2006), or the efficiency
of information transfer between different visual regions (Yeatman
et al., 2012, 2013), or the integration of sensory signals over time
(Joo et al., 2017). Broadly speaking, skilled reading requires rapid
communication among a distributed network of visual, auditory,
and language processing systems and an impairment in any one of
these systems, or the connections between them, could cause dif-
ficulties learning a complex skill like reading (Wandell & Yeatman,
2013).

Our main conclusion is a lack of concordance with either a sin-
gle deficit or cascading deficit model. Evidence derives from the
Healthy Brain Network public dataset (Study 1), which was modestly
consistent with a phonological-core model of dyslexia and but also
strongly suggested the need for other predictors to (1) avoid vast
overprediction (low specificity) of reading disability in the general
population and (2) explain the cases of dyslexia that occur without a
clear phonological impairment. Further evidence comes from Study
2, in which several forms of modeling suggested both direct and
indirect influences of visual processing on reading skill; a cascad-
ing model would predict that parameters from the DDM are useful
only insofar as they relate to phonological processing, but mediation
analysis and factor analysis were both consistent with the presence
of multiple distinct latent variables that combine additively to ex-
plain reading skill. As such, our results contradict claims that a single
mechanism, either phonological, visual, or non-sensory, can be con-
sidered the “fundamental” or “core” deficit of dyslexia.

The clinical implications of this multifactorial model are an im-
portant target for future research. Whether or not different risk
profiles predict outcomes for children enrolled in competing inter-
vention programs is an empirical question that cannot be readily
inferred from correlational data. For example, in a previous inter-
vention study we demonstrated that individual differences in visual
motion sensitivity have no prognostic value for predicting a child's
response to intervention (at least for the intervention approach we
employed, Joo et al., 2017).

Moving forward, we propose an additive risk factor mode of
dyslexia in which multiple dimensions of sensory, cognitive, and lin-
guistic processes contribute distinct risk for reading difficulties. Our
results are agnostic to whether poor performance on any given task
indicates deficits in the specific targeted function (e.g., motion pro-
cessing) or indexes processing capacities of a broader system (e.g.,
constructing a high-fidelity representation of a noisy visual signal).
There are also likely to be dimensions that we have not explored
here, as there is growing evidence for a unique role of oral language
and vocabulary skills in reading development (Catts et al., 2017,
Snowling, 2008; Snowling & Melby-Lervag, 2016).

In sum, an additive model outperforms cascading deficit models
or models that only consider measures of phonological processing
without considering the role of sensory processing. Rather than con-
tinuing to seek a single underlying cause of dyslexia, the field should
systematically build toward a more complete model of the factors
that add risk (or protection) for reading difficulties. Our data and
model necessitate a shift toward theories that explain skilled and
disabled reading as emerging from a high-dimensional space deter-
mined by several distinct processing systems.
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