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Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models

provide information about brain connectivity and are sensitive to the physical properties

of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of

non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest

because they were shown to be more sensitive to microstructural alterations in health

and diseases than measures based on the total anisotropy of diffusion which are highly

confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI

in the Diffusion in Python (DIPY) project—a large collaborative open-source project which

aims to provide well-tested, well-documented and comprehensive implementation of

different dMRI techniques. We demonstrate the functionality of our methods in numerical

simulations with known ground truth parameters and in openly available datasets. A

particular strength of our DKI implementations is that it pursues several extensions of

the model that connect it explicitly with microstructural models and the reconstruction of

3D white matter fiber bundles (tractography). For instance, our implementations include

DKI-based microstructural models that allow the estimation of biophysical parameters,

such as axonal water fraction. Moreover, we illustrate how DKI provides more general

characterization of non-Gaussian diffusion compatible with complex white matter fiber

architectures and gray matter, and we include a novel mean kurtosis index that is

invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY

provides a well-tested, well-documented and comprehensive reference implementation

for DKI. It provides a platform for wider use of DKI in research on brain disorders and in

cognitive neuroscience.
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1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI) uses a
pair of directional gradient pulses to induce rephasing of proton
spins, which depends on the motion of water molecules within
each measurement voxel (Stejskal and Tanner, 1965; Le Bihan
and Breton, 1985). Although dMRI measurements are typically
made within voxels on the order of millimeters in size, they
provide a view into the microstructural properties of human
tissue in vivo. This is because the image contrast provided by
dMRI is sensitive to micron-scale distances that are probed
through the random motion of water within a small amount of
time between the two gradient pulses (Kiselev, 2021).

The dMRI signal in each voxel is typically approximated
as a three-dimensional Gaussian distribution (Basser et al.,
1994; Le Bihan and Johansen-Berg, 2012), by estimating a 2nd
order tensor in every voxel. In addition to the directional
information about the principal diffusion direction of the
Gaussian distribution, which can be used for tractography (Mori
et al., 1999; Jones, 2008), this 2nd order tensor can be used to
extract scalar measures, such as the mean diffusivity (MD) and
the diffusion fractional anisotropy (FA) (Basser and Pierpaoli,
1996). The diffusion tensor imaging (DTI) model provides both
an accurate fit to the dMRI signal in a wide range of experimental
conditions (Rokem et al., 2015), as well as useful information to
probe tissue maturation or degeneration (e.g., Pfefferbaum et al.,
2000; Moseley, 2002; Lebel and Beaulieu, 2011; Le Bihan and
Johansen-Berg, 2012). However, in many important cases, it is
known to be systematically biased (Jones et al., 2013; De Santis
et al., 2014; Henriques et al., 2015) and it does not fully represent
the diffusion properties of multiple different populations of
water molecules inside complex biological tissue (Frank, 2001)
rendering it ensitive to confounding factors such as the
orientation dispersion of tissue components (Wheeler-Kingshott
and Cercignani, 2009; Henriques et al., 2015), as well as the
parameters of the MRI acquisition (Jones and Basser, 2004).

As an attempt to overcome these limitations of DTI, several
mechanistic models directly relate diffusion properties with
specific microstructural features (e.g., Assaf and Basser, 2005;
Jespersen et al., 2007; Fieremans et al., 2011; Nilsson et al.,
2012; Zhang et al., 2012), but improper assumptions can
compromise the validity of these models (Lampinen et al.,
2017, 2019; Henriques et al., 2019). To avoid misleading
interpretation, a complete characterization of water diffusion
in biological tissues can be obtained using phenomenological
models, which are also known as signal representation techniques
(Novikov et al., 2018a). Diffusional kurtosis imaging (DKI) is
a phenomenological model that directly estimates the degree to
which water diffusion deviates from a single Gaussian component
(Jensen et al., 2005). Describing water diffusion in every voxel as
an infinite mixture of Gaussian components, rather than a single
Gaussian, the excess-kurtosis measured by DKI can be directly
related to the variance of apparent diffusivities across different
tissue components (Jensen et al., 2005; Jensen and Helpern, 2010;
Fieremans et al., 2011). DKI is also sensitive to non-Gaussian
diffusion effects due to the interaction of water molecules
with boundaries (e.g., cell membranes or myelin sheaths) and

obstacles (e.g., organelles, macromolecules) (Callaghan et al.,
1991; Paulsen et al., 2015; Dhital et al., 2018; Jespersen, 2018;
Henriques et al., 2020a). This means that the scalars provided
by DKI closely relate to microstructural alterations in health
and in brain diseases (Grossman et al., 2012; Hui et al., 2012;
Fieremans et al., 2013; Benitez et al., 2014; Rudrapatna et al.,
2014; Steven et al., 2014; Marrale et al., 2016; Price et al., 2017;
Lin et al., 2018; Huber et al., 2019; Zhu et al., 2021) and has led
to the development of extensions of DKI that provide inferences
about specific aspects of the microstructure (Fieremans et al.,
2011; Jespersen, 2018; Novikov et al., 2018b; Henriques et al.,
2019). In addition, DKI provides information about the diffusion
orientation distribution function (dODF) within a voxel, that can
be used for tractography (Lazar et al., 2008; Jensen et al., 2014;
Glenn et al., 2015a, 2016; Henriques et al., 2015).

Despite the utility of DKI, the use of these analysis methods
depends on the availability of software implementations that
work with different DKI acquisition schemes. Moreover,
providing well-documented and well-tested open-source
implementations of DKI could propel the development of
more robust DKI reconstruction routines, novel DKI model
extensions, and integration with other imaging techniques. The
present paper discusses the implementation of the DKI model in
the DIPY project. DIPY is an open-source software library that
provides implementations of many different methods for analysis
of dMRI data (Garyfallidis et al., 2014). The library, implemented
in the Python programming language, relies on the robust
ecosystem of scientific computing tools in Python (Perez et al.,
2011). It has been in continuous development since 2009, and
provides a wide array of computational neuroanatomy methods.
In particular, the library provides a uniform programming
interface to many different dMRI signal reconstruction models
and models for inferring microstructure. Here, we will focus
on providing well-tested, well-documented open-source
implementations of DKI, and derived microstructural models.
In addition to the implementation details, in this paper, we will
also illustrate the advantages and drawbacks of the DKI model
based on numerical simulations, and demonstrate the range of
functionality implemented on openly available dMRI datasets.

2. METHODS

2.1. Theory and Implementation
Because DKI is a direct extension of the DTI model, we begin
with a brief explanation of DTI and establish our notation based
on this explanation. The implementation is part of the DIPY
source-code available at https://github.com/dipy/dipy . DIPY
depends only on the Numpy (Harris et al., 2020), Scipy (Virtanen
et al., 2020), and Nibabel (Brett et al., 2020) software libraries,
with some performance bottlenecks accelerated through use of
the Cython (Behnel et al., 2010) transpiler. In addition, Jupyter
notebooks to generate all the results presented in this paper are
available at https://github.com/dipy/dipy-dki-paper.

2.1.1. Diffusion Tensor Imaging
The diffusion tensor imaging (DTI) model describes the dMRI
signal S(n, b) using a 2nd order diffusion tensor (Basser et al.,
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1994). In Einstein’s summation convention, the DTI model can
be expressed as:

S(n, b) = S0e
−bninjDij (1)

where n is the direction of the diffusion gradient n = [n1, n2, n3],
b is a value that summarizes the intensity of diffusion weighting
(Le Bihan et al., 1986),D is the diffusion tensor.

To solve for D, it is usual to normalize the direction- and
b-value-specific signal by the non-diffusion-weighted signal and
re-represent this ratio in the log domain:

log(
S(n, b)

S0
) = −bninjDij (2)

This equation can be described through a set of linear equations
and solved for the six independent parameters in D (Basser
et al., 1994). In DIPY, the default fitting approach is based on
a conventional weighted-least squares technique (WLS) (Chung
et al., 2006). Other DTI fitting techniques are available in DIPY
such as ordinary least squares (OLS), non-linear least square
(NLS) and the robust estimation of tensors by outlier rejection
(RESTORE) technique (Jones and Basser, 2004; Chang et al.,
2005). For more information on how to fit DTI using DIPY see
section 2.1.8 below

2.1.2. Diffusion Tensor Metrics
After DTI fitting, the tensor D can be decomposed into three
eigenvectors (e1, e2, and e3 and their respective eigenvalues (λ1 ≥
λ2 ≥ λ3) (Basser and Pierpaoli, 1996). These eigenvalues are used
to compute rotationally-invariant metrics (i.e., measurements
that are independent of the applied gradient direction). For
instance, the mean, radial and axial diffusivities can be computed
as MD = (λ1 + λ2 + λ3)/3, RD = (λ2 + λ3)/2, and AD =

λ1. The eigenvalues of the diffusion tensor can also be used to
produce measures of the degree of diffusion anisotropy (Basser
and Pierpaoli, 1996). One of the most used diffusion anisotropy
measures is the fractional anisotropy which is defined as Basser
and Pierpaoli (1996) and Glenn et al. (2015b):

FA ≡

√

3

2

||D−MDI(2)||F
||D||F

=

√

3

2

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ21 + λ22 + λ23
(3)

where I(2) is the fully symmetric rank-2 isotropic tensor and
||...||F is the Frobenius norm of a tensor with rank N (Glenn
et al., 2015b). The factor 3

2 is introduced so that FA values range
between 0 and 1 (from lower to higher degrees of anisotropy).

2.1.3. Diffusional Kurtosis Imaging
To extend DTI and account for the excess diffusional kurtosis,
DKI models the diffusional kurtosis tensor W in addition to the
diffusion tensor D (Jensen et al., 2005). The DKI model can be
derived by expanding the cumulants of the diffusion-weighted
signal up to the 2nd order in b (Jensen et al., 2005). Using the
same notation and conventions as in Equation (2):

log(
S(n, b)

S0
) = −bninjDij +

1

6
b2(MD)2ninjnknlWijkl (4)

Similar to DTI, the DKI model can also be described through
a set of linear equations and solved for the six independent
parameters ofD and fifteen independent parameters ofW, noting
that W is axially symmetric (Lu et al., 2006; Tabesh et al., 2011).
In addition to 15 different gradient directions to resolve the
anisotropic information of W, the DKI model requires at least
three b-values (these can include signals for b=0 in addition to
two non-zero b-values). In DIPY, the default DKI fitting was
implemented based on a weighted-least squares (WLS) technique
in which weights are defined from previous diffusion parameter
estimates (Veraart et al., 2013). This fitting approach was shown
to provide diffusion and kurtosis estimates with higher reliability
when compared to other linear least square fitting strategies and
provides faster fits when compared to non-linear least square
approaches. Additionally, the fitting approaches implemented in
DTI (OLS, NLS, RESTORE) were adapted to the DKI model and
can also be used in DIPY as alternative DKI fitting strategies (c.f.
section 2.1.8 below).

2.1.4. Kurtosis Tensor Metrics
Since it also fits the diffusion tensor, DKI can be used to
estimate all DTI metrics (e.g., MD, RD, AD, FA explained above).
Additionally, rotationally-invariant measures can be defined
from the kurtosis tensor. In analogy to the definition of MD,
the mean kurtosis (MK) is defined as the average of directional
kurtosis coefficients across all spatial directions, which can be
formulated by the following surface integral (Jensen andHelpern,
2010):

MK ≡
1

4π

∫

d#nK(n) (5)

where K(n) is the directional kurtosis for a given direction n,
which can be sampled from the fitted diffusion and kurtosis
tensors as:

K(n) =
MD2

D(n)2
ninjnknlWijkl (6)

with

D(n) = ninjDij (7)

In DIPY, two approaches were implemented to compute MK:

1. the integral of Equation (5) is numerically resolved by
averaging directional kurtosis values sampled for a finite
number of directions. Biases of discrete direction samples can
be avoided by using a spherical t-design as shown by Hardin
and Sloane (1996). For the DIPY implementation of MK, a
t-design of 45 directions is used.

2. The second approach is based on the analytical solution of
Equation (5) (Tabesh et al., 2011), avoiding the use of discrete
directional samples. This approach requires the following
computing steps: (a) the rotation of the DKI tensors to a
frame of reference in which D eigenvectors are aligned to
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the Cartesian axis x, y and z. This rotated kurtosis tensor is
denoted as W̃; (b) the evaluation of Carlson’s elliptic integrals
(Carlson, 1995); and (c) the treatment of the solution’s
singularities for λ1 = λ2, λ1 = λ3, λ2 = λ3, and λ1 = λ2 =

λ3. These steps were vectorized for optimal processing speed.

A comparison of these two approaches is presented in
supplementary notebooks available at https://github.com/dipy/
dipy-dki-paper.

Since the directional kurtosis coefficient for a given direction
n depends on both diffusion and kurtosis tensors (Equation 6),
MK as defined by Equation (5) depends on both diffusion and
kurtosis tensors. To have a mean kurtosis metric independent to
the diffusion tensor, the mean kurtosis tensor (MKT) is defined
as Hansen et al. (2013) and Hansen and Jespersen (2017):

MKT ≡
1

4π

∫

d#nninjnknlWijkl (8)

This latter quantity can be directly computed from the trace of
the kurtosis tensor:

MKT =
1

5
Tr(W) =

1

5
(W1111 +W2222 +W3333 + 2W1122 + 2W1133 + 2W2233)

(9)

For voxels containing well-aligned structures, the radial kurtosis
is defined as the average of the directional kurtosis across all
directions perpendicular to the main direction of fibers which
should correspond to the diffusion tensor main direction e1)
(Jensen and Helpern, 2010; Tabesh et al., 2011):

RK ≡
1

2π

∫

d#θK(θ)δ(θ · e1) (10)

Similar to the estimation of MK, DIPY provides two methods to
compute RK based on a numerical and an analytical approach:

1. Equation (10) can be numerically computed by averaging
directional kurtosis values for directions perpendicular to e1.
The directional kurtosis values can be sampled from the fitted
kurtosis tensor using equation (6). Directions θ that are evenly
sampled and perpendicular to e1 1.

2. Alternatively, Equation (4) can be solved analytically, avoiding
discrete perpendicular direction samples (Tabesh et al., 2011).
This approach requires the rotation of the kurtosis tensor and
the treatment of a singularity for λ2 = λ3.

The axial kurtosis is defined as the directional kurtosis along the
main direction of well-aligned structures:

AK ≡ K(e1) (11)

This quantity can be computed from one of the following:

1http://gsoc2015dipydki.blogspot.com/2015/07/rnh-post-8-computing-
perpendicular.html

1. The directional kurtosis coefficient along the tensor
eigenvector (i.e., applying e1 into Equation (6);

2. From the tensor element W̃1111 of the rotated kurtosis tensor
(i.e., AK = MD2/λ21W̃1111, Tabesh et al., 2011).

Although both approaches lead to the exact calculation of AK, the
former and latter estimators will be referred to as the numerical
and analytical methods, respectively, to keep the nomenclature
consistent to the estimation strategies of MK and RK.

Similar to the definition of FA for the diffusion tensor, the
anisotropy of the kurtosis tensor can be quantified as Glenn et al.
(2015b):

KFA ≡
||W−MKTI(4)||F

||W||F
(12)

where I(4) is the fully symmetric rank 4 isotropic tensor, ||...||F is
the Frobenius norm (Glenn et al., 2015b), and MKT is the mean
kurtosis tensor defined by Equation (9). Analogs to the FA of the
diffusion tensor, KFA quantifies lower to higher kurtosis tensor
anisotropy in a range between 0 and 1.

2.1.5. White Matter Tract Integrity Model
One way to interpret the information captured by DKI is to fit
additional microstructural models to the diffusion and kurtosis
tensors (Jensen et al., 2005; Jensen and Helpern, 2010; Fieremans
et al., 2011; Jespersen, 2018; Novikov et al., 2018b). This approach
provides DKI-derived scalar quantities that are potentially more
specific to microstructural properties of the tissue, such as the
fraction of signal contributions due to extra- or inter-cellular
spaces. However, as in the case of microstructural models applied
directly to dMRI signals (Assaf and Basser, 2005; Jespersen et al.,
2007; Zhang et al., 2012; Kaden et al., 2016b), the interpretation
of these quantities is only valid if the assumptions of the
microstructural models are met (Lampinen et al., 2017, 2019;
Novikov et al., 2018a; Henriques et al., 2019). The White Matter
Tract Integity (WMTI ) model (Fieremans et al., 2011, 2013)
relates the diffusion and kurtosis tensors to the parameters of
a two compartments model representing the intra- and extra-
cellular components of aligned white matter fibres:

S(n, b)/S0 = f iae−bninjD
ia
ij + (1− fia)e

−bninjD
ea
ij (13)

where f ia is the intra-axonal water fraction (AWF), Dia is
the intra-axonal diffusion tensor and Dea is the extra-axonal
diffusion tensor.

The WMTI model relies on the following assumptions:

1. The tissue is only described by non-exchanging intra- and
extra-cellular compartments. Other signal components, such
as from glia cell, have to be in fast exchange with the extra-
cellular compartment.

2. The intra-cellular diameter of axons is much smaller than the
volume probed by diffusing particles. That is, intra-cellular RD
is practically zero.

3. In all directions water-molecules can more freely move in the
extra-cellular volume. That is, intra-cellular AD is smaller than
extra-cellular AD
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4. Intra-cellular spaces are well-aligned to each other. This does
not apply to voxels containing fiber dispersion or crossing.

5. Effects of the interaction of water molecules with the
boundaries of different intra- and extra-cellular compartments
(e.g., collision with cell membranes or myelin sheaths) or with
macromolecules are negligible.

Despite several studies that have demonstrated that these
assumptions are unlikely to hold in many cases (e.g., Dhital
et al., 2018), WMTI measures were still shown useful as sensitive
biomarkers for the characterization of progression of white
matter microstructural alterations in health and disease (e.g., Hui
et al., 2012; Fieremans et al., 2013).

In DIPY, WMTI is implemented as follows:

1. Computing the maximum directional kurtosis. Kurtosis is
evaluated using Equation (6) for 100 uniformly distributed
directions n and direction of the maximal value is used to seed
a quasi-Newton method algorithm to optimize the following
problem:

Kmax =
max
θ φ

[

K(n)
]

(14)

where θ and φ are the polar and azimuth coordinates of the
unit direction n that maximizes the kurtosis.

2. Computing the axonal water fraction. For a system described
by Equation (7), the maximum kurtosis is expected to be
perpendicular to the main direction (Fieremans et al., 2011;
Henriques et al., 2015). Under the assumption that intra-
cellular RD is zero, the axonal volume fraction (AWF) is
computed as Jensen and Helpern (2010), Fieremans et al.
(2011), and Jespersen (2018):

AWF =
Kmax

Kmax + 3
(15)

3. Decoupling the compartmental diffusivities. Assuming that
extra-axonal diffusivity is always higher than the intra-axonal
diffusivity, the directional diffusivities for both intra- and
extra-cellular compartmentsD(n)i andD(n)e are estimated for
given directions n, using the following expressions:

D(n)i = D(n)

[

1−

√

K(n)(1− AWF))

3AWF

]

(16)

and

D(n)e = D(n)



1+

√

K(n)AWF

3(1− AWF)



 (17)

where D(n) and K(n) are computed from Equations (7, 6).
The tensors Dia and Dea are computed from D(n)i and D(n)e
samples for at least six different directions n (Fieremans et al.,
2013).

4. Deriving WMTI metrics. In addition to the AWF, other

WMTI metrics are defined from tensors Dia and Dea: the
axonal diffusivity Dia defined as the trace of Dia; the axial and
radial diffusivities of the extra-cellular diffusion tensor ADea

and RDea; and the extra-cellular tortuosity which is defined as
the ratio between ADea and RDea.

2.1.6. Mean Signal Diffusional Kurtosis Imaging
The DKI model aims to characterize the full 3D directional
dependence of diffusional kurtosis, which is influenced by
tissue microstructural properties. For example, by the sizes
of different compartments, their apparent diffusivities, and
volume fractions. However, directional kurtosis is also affected
by tissue organization: the degree of dispersion, crossing or
fanning (Henriques et al., 2015). Increased specificity toward
microstructural properties can be achieved by measuring a scalar
excess-kurtosis index from powder-averaged signals (Henriques,
2018; Henriques et al., 2019). That is, averaged signals across
evenly-sampled gradient direction for each b-value that are
independent of the tissue orientation distribution function
(Jespersen et al., 2013; Kaden et al., 2016b). In DIPY, this
technique is referred to as the mean signal diffusional kurtosis
imaging (MSDKI). Analogs to the derivation of DKI from the
directional diffusion-weighted signals, the MSDKI model can be
derived from powder-averaged signals S̄(b) using the second-
order cumulant expansion (Henriques, 2018; Henriques et al.,
2019):

log(
S̄(b)

S0
) = −bDp +

1

6
b2(Dp)

2Kp (18)

where Dp and Kp are the diffusivity and excess-kurtosis of the
powder-average signals. In DIPY, these quantities are referred to
as the mean signal diffusivity (MSD) and mean signal kurtosis
(MSK). It is important to note that, while MSD theoretically is
equal to the standard mean diffusivity (MD) (Henriques et al.,
2019), MSK is equal to mean kurtosis tensor (MKT) subtracted
by a mesoscopic dispersion correction factor ' which can be
calculated from the diffusion tensor (Henriques et al., 2020a), i.e.,:

MSK = MKT − ' (19)

with

' =
6

5
−

2

5

D2
11 + D2

22 + D2
33 + 2D2

12 + 2D2
13 + 2D2

23

MD2 (20)

Diffusion-weighted data can be acquired with different numbers
of gradient directions Ng for different b-values. Therefore, in
DIPY, the MSDKI model (Equation 18) is fitted using a weighted
least square approach in which weights for each b-value are set to
w = NgS̄(b) (Henriques, 2018).

2.1.7. MSDKI-Based Microstructural Models
Analogs to the DKImetrics, the parameters ofMSDKI can also be
related to microstructural models. For instance, Henriques et al.
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(2019) showed that MSDKI captures the same information than
the spherical mean technique (SMT) microstructural models
(Kaden et al., 2016a,b). In this way, the SMT model parameters
can be directly computed from MSDKI. In DIPY, the intrinsic
diffusivity (DI) and the axonal water fractions (AWF) of the
two-compartmental SMTmodel parameters (Kaden et al., 2016a)
can be estimated from MSDKI parameters was implemented by
inverting the following equations (Henriques et al., 2019):

MSD =
DI(1+ 2(1− AWF)2)

3
(21)

and

MSK =
216AWF − 504AWF2 + 504AWF3 − 180AWF4

135− 360AWF + 420AWF2 − 240AWF3 + 60AWF4
(22)

Although SMT models are general to any tissue configuration
(i.e., general to well-aligned, crossing or dispersing fibers),
the two-compartmental model assumes that: (1) the axial
diffusivities of both intra- and extra-cellular spaces are equal
to the in the intrinsic diffusivity (DI), (2) the extra-cellular
radial diffusivity follows the first order tortuosity assumption
(RD = (1− AWF)DI); and (3) the intra-cellular radial diffusivity
is zero.

2.1.8. Software Implementation
DIPY uses object-oriented design for defining and fitting
diffusion models. A class hierarchy for diffusion reconstruction
models provides a uniform application programming interface
(API) for defining and fitting these models. We follow a
pattern established in the scikit learn machine learning library
(Pedregosa et al., 2011) whereby a model object is first defined
based on the gradient table containing the information of the
diffusion acquisition parameters (see Garyfallidis et al., 2014 for
details and also code examples in the present paper’s jupyter
notebooks https://github.com/dipy/dipy-dki-paper). For DTI,
the tensor model class instance can be imported and initialized
in the following way (Garyfallidis et al., 2014):

from dipy . r e c o n s t impor t d t i
model = d t i . TensorModel ( g tab ,
f i t _me thod = ’WLS ’ )

Note that the optional input parameter fit_method sets
the DTI fitting method—additionally to the default WLS fitting
strategy, DTI can also be fitted using the OLS, NLS, and
RESTORE approaches (c.f. section 2.1.1 "Diffusion Tensor
Imaging"). After importing and initializing DTI model, its model
fitting is then done separately once data is available:

d t i f i t = model . f i t ( da ta , mask=mask )

where data is a numpy array class instance containing the
diffusion-weighted data (last dimension of this matrix has to
correspond to the b-values and b-vectors) and the optional input
parameter mask can be used to indicate which voxels should

be processed (this option may be useful to avoid unnecessary
calculations on the background of the image).

This sets the model parameters as attributes of the fit object.
Calculation of scalar quantities, such as FA, is deferred until
these are needed. However, once these properties are called, they
are immediately set as attributes of their object (a pattern called
“one-time property” (Rokem et al., 2009). This simplifies access
to the these scalars. For example, to access the standard DTI
metrics mentioned in section 2.1.2, the following command lines
are used:

MD = d t i f i t .md
AD = d t i f i t . ad
RD = d t i f i t . rd
FA = d t i f i t . f a

In analogy to DTI, fitting the DKI model is:

from dipy . r e c o n s t impor t dk i
model = dk i . D i f f u s i o nKu r t o s i sMod e l ( g tab ,
f i t _me thod ="WLS " )
d k i f i t = model . f i t ( da ta , mask=mask )

Since DKI was implemented from inheritance of the DTI
implementations, these can be used to extract the diffusion tensor
metrics (section 2.1.2), in addition to the kurtosis tensor metrics
(section 2.1.4):

MD = d k i f i t .md
AD = d k i f i t . ad
RD = d k i f i t . rd
FA = d k i f i t . f a
MK = d k i f i t .mk ( )
MKT = d k i f i t . mkt
AK = d k i f i t . ak ( )
RK = d k i f i t . rk ( )
KFA = d k i f i t . k f a

Note that dkifit.mk, dkifit.ak, and dkifit.rk are
not implemented as a one-time property but as class function to
allow users to select the metrics calculation strategy (numerical
vs. analytical solution) as well as define the ranges of plausible
kurtosis values (c.f. section 2.1.4 and jupyter notebooks).

Regarding the WMTI model, its model class instance can be
imported, initialized and fitted in the following way:

from dipy . r e c o n s t impor t dk i_mic ro
model = dk i_mic ro . K u r t o s i sM i c r o s t r u c t u r e
Model ( g t a b )
wm t i f i t = model . f i t ( da ta , mask=mask )

TheWMTImodel parameters (AWF,Dia,ADea, RDea, and the
extra-cellular tortuosity) are obtained using the respective class
methods/attributes:

AWF = wm t i f i t . awf
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ADia = wm t i f i t . a x o n a l _ d i f f u s i v i t y
ADea = wm t i f i t . h inde red_ad
RDea = wm t i f i t . h inde r ed_ rd
TORT = wm t i f i t . t o r t u o s i t y

The mean signal diffusion kurtosis imaging (section 2.1.6)
and its respective SMT model conversion (section 2.1.7) can be
processed using the following lines:

from dipy . r e c o n s t impor t msdki
model = msdki . MeanD i f f u s i onKu r t o s i s
Model ( g t a b )
m s d k i f i t = model . f i t ( da ta , mask=mask )

MSD = ms d k i f i t . msd
MSK = ms d k i f i t . msk
AWF = ms d k i f i t . awf
DI = m s d k i f i t . d i

2.1.9. Numerical Simulations for DKI Unit Testing
DIPY uses both rigorous unit testing (with pytest) and
continuous integration (Travis, Appveyor and Azure Pipelines)
to validate software implementations against known analytically-
derived cases, and to assess any change to the software with fixes
and enhancements that are introduced. In this work, we ensured
that all the code statements in DIPY’s DKI implementations are
exercised in automated testing, i.e., there is 100% test coverage
(Zhu et al., 1997).

To test our DKI implementations, numerical simulations were
produced for a sum of N Gaussian diffusion compartments
(i.e., effects of interaction between diffusing water molecules and
compartment’s obstacles are assumed to be negligible):

S(n, b)/S0 =
N
∑

m=1

f me−bninjD
m
ij (23)

where f m is the apparent water fraction of a tissue compartment
m, andDm

ij are the elements of its Gaussian diffusion. The ground
truth of the elements of the total diffusion tensor Dij and total
kurtosis tensor Wijkl of the multiple compartment system are
computed as Lazar et al. (2008), Jensen and Helpern (2010), and
Henriques et al. (2015):

Dij =

N
∑

m=1

f mDm
ij (24)

and

Wijkl =
1

MD2

(

N
∑

m=1

f m
[

Dm
ij D

m
kl + Dm

ikD
m
jl + Dm

il D
m
jl

]

− DijDkl − DikDjl − DilDjl

)

(25)

To remove the effects of the cumulants of Equation (23)
associated with terms higher than the 2nd order in b,

synthetic diffusion-weighted signals for implementation testing
are produced by plugging the ground truth D and W tensors
into Equation (4). These synthetic signals were produced
for different ground truth compartmental tensors D(m) (with
different axial and radial diffusivities AD(m) and RD(m) and
different orientations), so that different diffusion metrics are
validated for different simulation scenarios. A summary of
different sets of ground truth parameters and the different checks
used for DKI unit testing are presented in Table 1. In addition
to these, the Carlson integrals were also evaluated according to
the numerical checks suggested in the original work by Carlson
(Carlson, 1995).

2.2. Simulated Experiments
To illustrate the accuracy of DKI in different scenarios of its
different metrics, diffusion tensors and kurtosis tensors are first
processed on single voxel synthetic signal (Equation 23) and
compared to the ground truth tensors (Equations 24, 25) for four
different sets of ground truth parameters (Figure 1A):

1. Single axial symmetric diffusion tensor component with
axial and radial diffusivities of 1.7e-3 and 0.3e-3 mm2/s.
These diffusivities were set according to typical white matter
diffusion tensor estimates.

2. Two aligned axial symmetric diffusion tensor components
with equal volume fractions. This scenario was produced to
consider typical diffusion heterogeneity of voxels containing
single healthy white matter fiber populations. As a toy-model
two diffusion tensors are referred to as intra- and extra-
cellular components. Axial diffusivity, radial diffusivity and
volume fraction for the intra-cellular components were set
to 1.4e-3 mm2/s, 0.1e-3 mm2/s, and 0.5, while the axial
diffusivity, radial diffusivity and volume fraction for the extra-
cellular component were set to 2e-3mm2/s, 0.5e-3mm2/s, and
0.5, respectively.

3. Two aligned axial symmetric diffusion tensor components
with different volume fractions. This scenario was produced
as a toy-model of a damaged single fibre population. For
this, relative to scenario 2, the volume fraction of the intra-
cellular cellular component was decreased to 0.3 while the
radial diffusivity of the extra-cellular space was increased to
0.7e-3mm2/s.

4. Four axial symmetric diffusion tensor components with equal
volume fractions. This scenario was produced as a toy model
to represent the intra- and extra-cellular contributions of two
fiber populations crossing at 60 degrees.

The synthetic signals for each set of ground truth parameters
are generated according to the same gradient directions n
of the CFIN human brain dataset and b-values = 1,000,
2,000, 3,000 s/mm2 (vide infra) in addition to six b-value=0
images. After assessing the fitted tensor accuracy, the robustness
of DKI metrics are tested in synthetic signals corrupted
with Rician noise at different SNR levels. To assess the
robustness of our DKI implementations relative to other software
implementations, these simulations were also processed using the
DKI procedures provided by PyDesigner (https://github.com/m-
ama/PyDesigner) a recently developed software that combines
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FIGURE 1 | Diffusion and kurtosis tensors from single and multi-tensor

toy-models. (A) Illustration of the tensor components of each simulation case:

(A.1) single tensor with AD and RD = 1.7× 10−3mm2/s and

1.3× 10−3mm2/s; (A.2) mixture of collinear tensors with AD1, RD1, AD2, and

RD2 = 1.4× 10−3, 0.1× 10−3, 2× 10−3, 0.5× 10−3mm2/s (toy-model of a

healthy fiber population); (A.3) mixture of collinear tensors with AD1, RD1, AD2,

and RD2 = 1× 10−3, 0.1× 10−3, 2× 10−3, 0.7× 10−3mm2/s (toy-model of a

damaged fiber population); and (A.4) mixture of crossing tensors (toy-model of

crossing healthy fiber populations). (B) Diffusion tensors for each voxel

simulation: (B.1–B.4) Ground truth diffusion tensors; (B.5–B.8) diffusion

tensors computed from DTI fit; and (B.9–B.12) diffusion tensors computed

from DKI. (C) kurtosis tensors for each voxel simulations: (C.1–C.4) Ground

truth kurtosis tensors; (C.5–C.8) Kurtosis tensors fitted by DKI. In this figure,

diffusion tensor are plotted in their ellipsoid representation, while kurtosis

tensors are plotted as the 3D spatial variation of apparent kurtosis coefficients.

functionality of the Diffusion Kurtosis Estimator (DKE) and
Designer packages (Jensen et al., 2005, 2016; Jensen and Helpern,
2010; Fieremans et al., 2011; Tabesh et al., 2011; Glenn et al.,
2015b; Ades-Aron et al., 2018; McKinnon et al., 2018; Moss
et al., 2019; Moss and Jensen, 2021)—more information of
these packages are described in discussion section 4.2. Since
PyDesigner allows the introduction of parameter constraints, two
version of PyDesigner estimates are tested and compare: (1) data
fitting with no constraints in diffusion and kurtosis estimation;

and (2) data fitting by constraining all apparent directional
kurtosis to positive values.

2.3. MRI Experiments
Open-source software tools such as DIPY serve a particularly
important role in advancing science in a period in which we
are seeing an increase in availability of open datasets. In the
work presented here, we use some of these open datasets to
illustrate typical contrasts of different DKI metrics and to show
the functionality of our DKI implementations.

2.3.1. DKI-Specific Datasets
To illustrate some typical DKI contrasts, we processed two
datasets that were specifically collected to support the
development of DKI modeling approaches (Hansen and
Jespersen, 2016a). These datasets will be referred to as the CFIN
datasets and correspond to data of brains of two different
species (human and rat) acquired using a scanner from two
vendors (Siemens and Bruker Biospin). The human brain
dataset was acquired in vivo in a Siemens 3T MRI instrument,
with a 32 channel head coil. Measurements along 33 diffusion
gradient directions for multiple b-values were sampled in steps
of 200 s/mm2 from 200 s/mm2 to 3,000 s/mm2 in addition
to a single acquisition for b-value=0. . This data was acquired
with inversion recovery to suppress cerebrospinal fluid signal.
The rat brain dataset was acquired ex vivo for an half brain
hemisphere using a Bruker Biospec 9.4 T MRI system equipped
with a 15mm quadrature coil. Although the rat brain dataset was
originally acquired for a larger number of b-values, to decrease
processing time, here we only selected the 33 diffusion gradient
directions/repetitions for b-values = 0, 1,000, 2,000, 3,000, 4,000,
5,000 s/mm2. More information about these datasets were
previously reported (Hansen and Jespersen, 2016a).

Since DKI involves the estimation of a large number of
parameters and since the non-Gaussian components of the
diffusion signal are more sensitive to artefacts (Jensen et al., 2005;
Tax et al., 2015), it might be favorable to suppress the effects of
noise and artefacts before diffusional kurtosis fitting. Noise of
the CFIN datasets were suppressed using the Marcenko-Pastur
PCA denoising algorithm as proposed by Veraart et al. (2016b),
while the impacts of Gibbs ringing artefacts were attenuated
using a sub-voxel Fourier Transform shifts (Kellner et al., 2016;
Henriques, 2018). Both pre-processing procedures were shown
to provide optimal performances for DKI (Ades-Aron et al.,
2018; Henriques, 2018). Open-source implementations of these
procedures are available in DIPY.

After all data is pre-processed, DKI-based metrics are
extracted using the DIPY NLS-DKI fitting (MK, AK, and RK
estimates are obtained using the default analytical solution),WLS
MSDKI fitting, andWMTI fitting routines. DKI parametric maps
are then compared to the maps obtained using the PyDesigner
software. To highlight the differences between the different
procedures, this later comparison is performed for a subset of
CFIN’s human brain dataset. For this data subset we selected
all the signals acquired for b-values = 0, 200, 1,000, 2,000, 3,000
s/mm2.
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2.3.2. Testing DKI in a Large Open Dataset
We tested the DKI implementation in data from the Human
Connectome Project (HCP) (Glasser et al., 2016). The HCP has
collected data about brain connectivity from 1,200 individuals
and includes measurements of functional and structural MRI, as
well as dMRI, in addition to manymeasurements of phenotypical
information (e.g., behavioral assessments) (Sotiropoulos et al.,
2013; Glasser et al., 2016). We used data from the 1,064
subjects for which a complete dMRI measurement was
available to compare the DTI and DKI models. Briefly: the
measurements conducted included 270 measurement directions,
90 directions in each of three b-value tiers: b ≈ 1, 000s/mm2,
b ≈ 2, 000s/mm2 and b ≈ 3, 000s/mm2. In addition, 18
measurements with b-values close to 0 (b ≈ 5s/mm2 were
taken. Voxel dimensions were 1.25 × 1.25 × 1.25 mm3. We
used data that was preprocessed using the HCP preprocessing
pipeline. Additional details of measurement and processing were
previously published (Sotiropoulos et al., 2013). The data was
accessed in the Amazon Simple StorageWeb Service (S3) through
the AWS Open Data program.

To assess the goodness of fits to the data, we calculated
Akaike’s information criterion (AIC) for DKI and DTI fits. AIC
is a measure of goodness of fit that balances the residual sum
of squares of a model with the number of free parameters
(Cavanaugh, 1997) and it is asympotically equivalent to cross-
validation (Stone, 1977). In addition to goodness of fit, we can
assess the reliability of metrics derived from both models in
this data. This is done by sub-sampling the data into different
combinations of b-value tiers, as previously done in (Veraart
et al., 2011). FA was calculated using DTI for the b ≈

1, 000s/mm2 tier and for a combination of the b ≈ 1, 000s/mm2

tier and the b ≈ 2, 000s/mm2 tier. FA was also calculated
using DKI for a combination of b ≈ 1, 000s/mm2 and b ≈

2, 000s/mm2 and for a combination of b ≈ 1, 000s/mm2 and b ≈

3, 000s/mm2. Reliability is assessed by computing the differences
between the values of FA/MD for the two sub-samples. We
assessed and compared whether these values tended to be small
by looking at the median absolute deviation (MAD). In addition,
we assessed whether there are systematic differences between
different samples—whether these values tended to be centered
around zero—by examining their median value.

3. RESULTS

3.1. DKI Simulations
The ground truth of the diffusion tensors mixture for the
four different voxel simulations is shown in the Figure 1A.
For all voxel simulations, Figure 1B shows the ground
truth diffusion tensor computed using (Equation 24)
(Figures 1B.1–B.4), the diffusion tensors computed from
DIPY’s DTI fit (Figures 1B.5–B.8), and the diffusion tensors
computed from DIPY’s DKI fit (Figures 1B.9–B.12). Note
that, for the multi-component simulations (Figures 1A.2–A.4),
diffusion tensors from DKI (Figures 1B.10–B.12) are closer to
the ground truths (Figures 1B.2–B.4) than the diffusion tensors
from DTI (Figures 1B.6–B.8). For a visualization of the kurtosis
tensors, the apparent directional kurtosis computed from both

ground truth (Equation 25) and DKI-fitted tensors are shown in
Figure 1C. Both ground truth and fitted kurtosis tensors are null
for single diffusion component simulations (Figures 1C.1,C.5).
They show maximum values perpendicular to the direction of
the aligned multi-tensors (Figures 1C.2,C.3,C.6,C.7) Maximum
kurtosis values are also present perpendicularly to the both
directions of crossing fiber populations (Figures 1C.4,C.8).

Figure 2 shows the values of DKI metrics obtained for
the noise free synthetic signals of all four voxel simulations.
Simulation cases 1 and 2 were designed to have equal values of
MD, RD, AD, and FA. However, the presence of multi-tensors
for voxel case 2 is revealed by the positive values of the standard
kurtosis values (i.e., MK, RK, AK , MKT). MSK is positive even
for synthetic signals of a single diffusion tensor (case 1) because,
as being a metric from directional-averaged signals, it is sensitive
to diffusion variance across different gradient directions. Relative
to a toy model of a healthy fiber population (voxel case 2), all
standard diffusivity metrics (MD, RD, and AD) show higher
values for the toy model of a damaged fiber population (case 3),
while kurtosis metrics shows lower values (except from MKT).
FA shows also decreased values for the damaged fiber toy model;
however, its values are even lower for the toy model of healthy
crossing fibers (case 4). MSK shows equal values for simulation
case 2 and 4, confirming that, in opposite of MK and MKT,
MSK is only dependent on the diffusion variance across voxel
components and invariant to added crossing compartments.

Figure 3 shows the median and interquartile ranges of DKI
estimates from synthetic signals of voxel case 2 corrupted with
Rician noise as a function of simulations nominal SNR (results
for other voxel cases can be easily reproduced from the provided
jupyter notebooks). For all estimates, interquartile ranges and
deviations between the median and noise free estimates (marked
by the black line) are higher from lower SNRs. The SNR
dependency of these statistical parameters are similar between
DIPY’s DKI and PyDesigner estimators with no parameter
constraints (Figures 3A,B). MK, RK, and AK is underestimated
by noise when these two estimators are used. When apparent
kurtosis values are forced to positive values (Figure 3C), MK, RK,
and AK estimates are overestimated for lower SNRs; however, the
magnitude deviations between median and noise free values are
similar across all tested DKI estimators. For all estimators, KFA
estimates show to be highly biased by Rician noise even for a high
SNR of 100.

3.2. Example DKI Contrasts
Diffusion tensor metrics extracted from an axial slice of the in
vivo human CFIN datasets are shown in the upper panels of
Figure 4A. Upper panels show the diffusion metrics extracted
from the DTImodel, while Figure 4B shows the diffusionmetrics
extracted from the DKI model. Figures 4C,D shows the diffusion
tensor metrics from the ex vivo rat brain for both DTI and
DKI fits, respectively. As expected, all diffuvisities of the ex
vivo rat brain dataset are lower than the in vivo human brain
dataset. Despite this for both specimens: MD maps show low
contrast between gray and white matter; lower RD and higher AD
values are present on white matter regions; diffusion fractional
anisotropies show higher values in white matter, particularly for
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FIGURE 2 | DKI and MSDKI diffusion and kurtosis metrics for the four voxel simulations: (A) Mean diffusivity; (B) Radial diffusivity; (C) Axial diffusivity; (D) Fractional

Anisotropy; (E) mean kurtosis; (F) Radial Kurtosis; (G) Axial kurtosis; (H) Kurtosis Fractional Anisotropy; (I) Mean Kurtosis Tensor; (J) Mean signal kurtosis.

regions corresponding to aligned white matter fiber bundles.
MD, AD and RD estimates from the DTI model show lower
values in comparison to the measures extracted from DKI
(Figures 4A,C vs. B,D).

Different kurtosis-based metrics are shown in Figures 5A,B
for both in vivo human and ex vivo rat brains datasets,
respectively. MK presents higher intensities in white matter
(Figures 5A.1,B.1. On the other hand, RK shows values higher
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FIGURE 3 | Median and interquartile ranges of the standard kurtosis parameter estimates computed from the synthetic signals of voxel case 2 corrupted with Rician

noise—values are plotted as a function of signal SNR. (A) Estimates obtained by DIPY’s DKI NLS fit. (B) Estimates obtained by PyDesigner WLS fit with no parameter

constraints. (C) Estimates obtained by PyDesigner WLS fit with directional kurtosis values constraint to positive values. From left to right panels, Figures shows the

results for the mean diffusivity (A.1,B.1,C.1), radial diffusivity (A.2,B.2,C.2), axial diffusivity (A.3,B.3,C.3), fractional anisotropy (A.4, B.4, C.4), mean kurtosis

(A.5,B.5,C.5), radial kurtosis (A.6,B.6,C.6), axial kurtosis (A.7,B.7,C.7), and kurtosis fractional anisotropy (A.8,B.8,C.8). On each panel, the noise free estimates is

marked by the black line.

than the AK (Figures 5A.2/B.2 vs. A.3/B.3. Although diffusion-
weighted data was pre-processed using the PCA denosing and
Gibbs unringing algorithms, MK and RK maps still present
implausible low kurtosis values in deep white matter (e.g., voxels
pointed by red arrows in Figure 5). Kurtosis fractional anisotropy
(KFA, Figures 5A.4,B.4) shows different contrast than the
standard FA map shown in Figures 4A.4,B4,C4,D4. Mean
kurtosis tensor (MKT) estimates show similar contrast to the
MK map; however, MKT white matter estimates seem to be less
affected by implausible low kurtosis values (Figures 5C.1,D.1).
Mean signal kurtosis maps (Figures 5C.2,D.2) are also similar to
MK and MKT maps; however, white matter estimates are absent
from implausible negative values.

3.3. Comparison With pyDesigner DKI
Implementation
Figure 6 shows the kurtosis maps obtained from the subset of the
in vivo human brain dataset using DIPY DKI implementations
and PyDesigner software (Jensen et al., 2005, 2016; Jensen
and Helpern, 2010; Fieremans et al., 2011; Tabesh et al.,
2011; Glenn et al., 2015b; Ades-Aron et al., 2018; McKinnon
et al., 2018; Moss et al., 2019; Moss and Jensen, 2021). In

general, the results obtained from different estimators are in
agreement (with the exception of some high kurtosis estimates
from PyDesginer in regions near the parenchyma). We also
find that implausible negative kurtosis in white matter can
be suppressed when constraining kurtosis to positive values
(see red arrows in Figure 6C.2); however, corrected values
show to present lower values in comparison to adjacent white
matter voxels.

3.4. Example DKI-Based Microstructural
Model Contrast
The results of the two kurtosis-based microstructural models
are presented in Figure 7. Axonal water fraction (AWF) and
tortuosity estimates from the WMTI model are plotted on
well-aligned white matter regions in panels A and B, together
with their histograms that reveals similar value ranges to those
reported on the original WMTI paper (Fieremans et al., 2011).
Figures 7C,D show the AWF and intrinsic diffusivity estimates
obtained by converting the MSDKI parameters to the SMT2
(MSDKI-SMT2) model parameters (Equations 22, 21). AWF
map from the MSDKI-SMT2 model presents a similar contrast
than the MSK map (Figure 5C.2).

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 675433



Henriques et al. DKI in DIPY

FIGURE 4 | Standard diffusion metrics for a representative axial slice of the the two CFIN datasets and extracted from both DTI and DKI models implemented in DIPY:

(A) DTI diffusion metrics for the in vivo human brain dataset; (B) DKI diffusion metrics for the in vivo human brain dataset; (C) DTI diffusion metrics for the ex vivo rat

brain dataset; (D) DKI diffusion metrics for the ex vivo rat brain dataset;. Left to right panels show the maps of mean diffusivity (A.1,B.1,C.1,D.1), radial diffusivity

(A.2,B.2,C.2 D.2), axial diffusivity (A.3,B.3,C.3,D.3), and Fractional Anisotropy (A.4,B.4,C.4,D.4).

3.5. Evaluating and Comparing Goodness
of Fit and Reliability of DTI and DKI
We compared the performance of the DKI and DTI model
in a large sample: the 1,064 individuals from the HCP 1,200-
subject release that had completed the entire dMRImeasurement.
As a measure of model goodness of fit, we computed Akaike’s
information criterion (AIC). We found that the median AIC is
lower for DKI than for DTI in all subjects, indicating that DKI has
a better goodness of fit (Figure 8). This was true both when the

DTI model was fit to all of the b-values in the data, but also when
DTI was fit only to the high SNR b-value tier of b ≈ 1, 000s/mm2.

To evaluate the reliability of the two models, we compared
the stability in their estimates of the derived FA value and MD.
As explained in section 2.1.4, this measure can be computed
with both of the models, and their interpretation would be
similar, even when values derived from the different models may
differ. We used a strategy previously used in comparing these
indices derived from the two models in data collected in rat
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FIGURE 5 | Kurtosis metrics for a representative axial slice of the two CFIN datasets computed using the DIPY’s DKI and MSDKI implementations: (A) DKI diffusion

metrics for the in vivo human brain dataset (A.1 Mean Kurtosis, A.2 Radial Kurtosis, A.3 Axial Kurtosis, A.4 Kurtosis Fractional Anisotropy); (B) DKI diffusion metrics for

the ex vivo rat brain dataset (B.1 Mean Kurtosis, B.2 Radial Kurtosis, B.3 Axial Kurtosis, B.4 Kurtosis Fractional anisotropy); (C) mean kurtosis tensor and mean signal

kurtosis maps for the in vivo human brain dataset (C.1, C.2, respectively); (D) mean kurtosis tensor and mean signal kurtosis maps for the ex vivo rat brain dataset

(D.1,D.2, respectively).

brain (Veraart et al., 2011): data is sub-sampled to different b-
values. For DTI, we assessed FA/MD in b ≈ 1, 000s/mm2 and
in a combination of b ≈ 1, 000 + 2, 000s/mm2. In DKI, we
assessed FA/MD in combinations of b ≈ 1, 000 + 2, 000s/mm2

and b ≈ 1, 000+ 3, 000s/mm2. We find that FA/MD reliability is
consistently higher for DKI than for DTI (Figures 9, 10). This is
true both in terms of the magnitude of the differences as well as
the degree to which they tend to be centered on zero.

4. DISCUSSION

Diffusional kurtosis Imaging (DKI) is a straightforward
expansion of standard diffusion tensor imaging (DTI).

Here, we provide a well-tested reference implementation of
DKI model fitting and related techniques in the DIPY project
(Garyfallidis et al., 2014) (100% test coverage; Zhu et al.,
1997). The implementation is feature complete: it includes

several different methods for fitting the basic DKI model and
compute derived quantities, as well as relevant extensions to the
model: the mean signal DKI (MSDKI) model (Henriques, 2018),
WMTI (Fieremans et al., 2011), and the MSDKI-SMT models
(Henriques et al., 2019). A reference implementation of these
methods that is comprehensive, thoroughly-tested and well-
documented is an important accelerant for subsequent scientific
research. It provides a proving ground for new methods and
a basis for comparison between methods. The fact that DIPY
is managed as an open software library, where issues can be
publicly reported, discussed and addressed, means that errors can
be surfaced by any user of the software. The open-source code
means that these issues can be demonstrated and fixed directly
by reference to the code itself. This is important for correctness
of the implementation, and it also promotes the reproducibility
of results obtained using this implementation (Rokem et al.,
2018). The modularity and object-oriented design of the software
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FIGURE 6 | Kurtosis maps obtained from a subset of the in vivo human brain dataset using three different estimators: (A) DIPY DKI NLS estimator; (B) PyDesigner

with no parameter constraints; (C) PyDesigner constraining the apparent directional kurtosis values to positive values. Left to right panels show the maps of mean

kurtosis (A.1,B.1,C.1,D.1), radial diffusivity (A.2,B.2,C.2,D.2), axial diffusivity (A.3,B.3,C.3,D.3), and Fractional Anisotropy (A.4,B.4,C.4,D.4).

means that statistical procedures that are implemented in one
model can be readily translated to other models. For example, we
demonstrate here the use of cross-validation formodel evaluation
(Rokem et al., 2015). The DIPY application programming
interface provides uniform methods for resampling such that the
model is fit in some directions and predicted in other directions.
This software architecture is extensible.We have already used this
fact to extend DKI. But it also means that others can rely on the
architecture to build future developments.

4.1. Findings
To demonstrate the utility of our software, we analyzed
several different datasets. Numerical simulations were first
used to demonstrate the sensitivity of the DKI method
and the software in known microstructural configurations.
Particularly, based on these simulations, we demonstrate that
DKI does not only provides a quantification of non-Gaussian
diffusion but also decouples non-Gaussian diffusion effects
from standard diffusion tensor metrics–a reason why DKI
diffusion tensor estimates more closely match their ground
truth estimates than the DTI tensor estimates (Figure 1).

Simulations were also used to illustrate that, while systems
comprising different components with distinct diffusivities and
configurations can present very similar diffusivities, kurtosis
estimates can help distinguish them by providing information
on diffusion heterogeneity (Figure 2). Our simulations also
reproduce the kurtosis geometries exploration of Henriques et al.
(2015) which revealed that maximum kurtosis values are present
perpendicular individual fibers even in crossing configurations,
and confirmed thatMSK estimates are invariant to the directional
configuration of tissue compartments. We also confirmed that
kurtosis fractional anisotropy provides different information
than the standard diffusion fractional anisotropy (Glenn et al.,
2015b; Hansen and Jespersen, 2016b; Hansen, 2019); however, we
found that KFA can be highly corrupted by noise biased by noise
even at high SNRs (Figure 3).

We used the CFIN human brain dataset to provide examples
of the contrasts provided by DKI (Hansen and Jespersen, 2016a).
This is a dataset that is directly and openly accessible to anyone
through the DIPY dataset interface, so the figures using this
data can be reproduced with code that we provide (and is
also provided as part of the DIPY documentation, both for
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FIGURE 7 | Metrics from the kurtosis-based microstructural models: (A)

Axonal water fraction (AWF) estimates from the white matter tract integrity

model—(A.1) shows the AWF estimates of well-aligned fiber regions overlaid

on a top of the mean signal kurtosis image, while (A.2) shows the histograms

of AWF estimates for well-aligned fiber regions. (B) Tortuosity (TORT)

estimates from the white matter tract integrity model—(B.1) shows the TORT

estimates of well-aligned fiber regions overlaid on a top of the mean signal

kurtosis image, while (B.2) shows the histograms of TORT estimates for

well-aligned fiber regions. (C) Axonal water fraction (AWF) estimates from the

spherical mean technique converted from the MSDKI model. (D) Intrinsic

diffusivity (ID) estimates from the two-compartmental spherical mean

technique converted from the MSDKI model.

standard DKI2 and for MSDKI 3). This data is used in tandem
with supporting methods that address some of the limitations
of the method (see below): to produce the maps shown in
Figures 4, 5, we used both denoising (Veraart et al., 2016b)
and Gibbs ringing removal (Kellner et al., 2016; Henriques,
2018), both implemented in DIPY. Based on this sample
dataset, we demonstrate the typical contrasts of Mean, axial
and radial diffusivities and kurtosis. We illustrate that MK,
MKT, and MSK present similar contrasts (consistent to what
was reported by Hansen et al., 2013), but MSK was shown
to be more robust to image noise and artifacts. We also ran

2https://dipy.org/documentation/latest/examples_built/reconst_dki/
3https://dipy.org/documentation/latest/examples_built/reconst_msdki

the DIPY DKI implementations on a open access ex vivo rat
brain dataset (Hansen and Jespersen, 2016a), confirming that the
implementations produce stable results from data acquired on
both clinical and pre-clinical scanner and on different species (in
vivo and ex vivo).

The CFIN human brain dataset were also used to illustrate
the estimates obtained from the implemented kurtosis-based
microstructural models (Figure 7). Axonal volume fraction and
extracellular tortuosity estimates from the white matter tract
integrity model (WMTI) showed similar value ranges than
reported on the original WMTI paper (Fieremans et al., 2011).
As one may expect from the theory (e.g., equation 22), we
also highlighted that the axonal water fraction maps obtained
for the MSDKI-SMT2 model provide similar contrast to MSK.
Since previous studies showed that SMT2 assumptions do
not properly represent biological tissues (Henriques et al.,
2019), AWF should not be interpreted as accurate biophysical
estimates of axonal water fraction. Instead, it could be
a useful normalized version of MSK scaled in a range
between 0 and 1.

Finally, we analyzed a large, openly available dataset provided
by the Human Connectome Project (Sotiropoulos et al., 2013;
Glasser et al., 2016). In this dataset, we found that DKI
consistently fit the data more accurately than DTI. In addition,
FA and MD derived from DKI showed less variability across
different sub-samples of the data. Considering these two facts,
we conclude that in this dataset, FA and other metrics should be
computed using the DKI model. These findings are important
in the context of the HCP dataset, as this data is likely to be
analyzed by many other researchers. In addition, several efforts
are currently underway to collect similar large-scale datasets with
multiple diffusion weighting values (e.g., Alexander et al., 2017;
Jernigan et al., 2018), and similar conclusions may apply in these
datasets as well.

4.2. Related Work
There are several other software implementations of DKI that
are available (see Table 2 for a comparison). These include
implementations in the DKE software (Tabesh et al., 2011),
available through NITRC 4 and ExploreDTI (Leemans et al.,
2009). But neither of these software projects is open-source
or provided through an OSI-approved license, limiting their
broad use. In addition, they both require the proprietary
Matlab software platform. While MATLAB is widely available
in most academic environments in the developed world, it is
less accessible in developing countries (Ramachandran, 2016)
and in extra-academic uses of diffusion MRI (e.g., in industry).
Other Python-based software that provides open-source and
OSI-approved licensed software are DESIGNER (Ades-Aron
et al., 2018) and the recently-released pyDesigner (Jensen et al.,
2005, 2016; Jensen and Helpern, 2010; Fieremans et al., 2011;
Tabesh et al., 2011; Glenn et al., 2015b; Ades-Aron et al., 2018;
McKinnon et al., 2018; Moss et al., 2019; Moss and Jensen, 2021).
A comparison of the DIPY implementation to the pyDesigner
implementation provided a very close match (Figure 6). Given

4https://www.nitrc.org/projects/dke/
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FIGURE 8 | Comparing DTI And DKI goodness of fit in the Human Connectome Project dataset. Within a typical single individual (A), the distribution of AICs

displayed. Dashed line indicates the median of each distribution. (B) AIC is also consistently lower for DKI than for DTI for all subjects in the dataset who have

measurements of DWI. (C) This holds, though the effect is substantially smaller, when the DTI model is fit only to data with b = 1, 000 s/mm2.

FIGURE 9 | Comparing DTI And DKI FA variability in the Human Connectome Project dataset. We compared FA for DTI and DKI in different subsets of the data ,

divided by b-value. In each voxel in the white matter, we computed the difference in FA (( FA) between the subsets and quantified the properties of the distribution of

( FA. (A) For example, within a representative subject, we find that the median absolute difference (MAD) is smaller for DKI than for DTI (the distribution of ( FA is

narrower). We also find that the median ( FA is closer to 0. This is consistent in all of the subjects in the sample, both for MAD (B) and for median (C).

that the implementations were done completely independently,
this agreement provides a sign of the robustness of DKI across
different software (Kruper et al., 2021). Finally, the recent version
of the mrtrix software (Tournier et al., 2019) also includes
an implementation of DKI estimation. The software presented
here adds to these software projects in that it includes Python-
based implementations that are, on the one hand, completely
open-source and gratis for use in any context. On the other
hand, using the Python programming language enhances the
readability of the code and its understanding by researchers
from many different backgrounds (e.g., relative to scientific
software implemented in compiled languages, such as C/C++).
The software is specifically designed to enable extensions and
further developments on top of the existing methods. These
design considerations have allowed our development team to
expand the original implementation of DKI to include many
different additional methods, described above.

4.3. Limitations and Future Work
As we highlight in this work, DKI can provide more accurate
diffusion estimates than DTI in addition to measures of
diffusional kurtosis. However, it is important to note, fitting
DKI requires data from multi-shell b-values, and thus it cannot
be used to analyze data acquired using single non-zero b-
value acquisitions. Moreover, since it involves the estimation
of a larger number of parameters than DTI, DKI can provide
less precise (i.e., noisier) estimates. Moreover, our simulations
(Figure 3) shows that DKI parameters can not only suffer from
low precision but also biased by Rician noise even at typically
diffusion data SNRs ( 20-40). As illustrated in Figure 5, thermal
noise biases can manifest as implausible negative estimates
“black voxels” in standard DKI maps, particularly in regions
where diffusivities are low (Tabesh et al., 2011; Henriques,
2012; Kuder et al., 2012; Veraart et al., 2013). Implausible
negative kurtosis estimates can also originate from effects of
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FIGURE 10 | Comparing DTI And DKI MD variability in the Human Connectome Project dataset. A similar analysis to Figure 9 was conducted with MD, comparing

two partially overlapping subsets of data to each other. Here as well, we find that within an individual example subject (A), as well as in the entire sample, both the

mean absolute deviation (B) and median value (C) are higher for DTI than for DKI.

different image artefact such as Gibbs Ringing artefacts as
explained by Perrone et al. (2015) and Veraart et al. (2016a).
To to minimize the effects of noise and artefact, in this
work we decided to used state-of-the denoising and artefact
suppression algorithms (Kellner et al., 2016; Veraart et al.,
2016b); however, other pre-processing techniques in DIPY could
be used, including the threshold-based PCA denoising (Manjón
et al., 2013), the non-local means denoising filter (Coupé et al.,
2011) and the self-supervised denoiser Patch2Self (Fadnavis
et al., 2020). Particularly, Fadnavis et al. demonstrated that
Patch2Self outperforms current implementations of low-rank
method approximations, such as MP-PCA (Fadnavis et al.,
2020). Implausible kurtosis estimates can also be mitigated by
excluding data outliers Chang et al., 2005; Tax et al., 2015),
imposing constraints (Tabesh et al., 2011; Kuder et al., 2012)
(as also shown in Figure 6), and readjusting b-value=0 data
points (Zhang et al., 2019). Alternatively, if only interested
in isotropic kurtosis measures, one could opt to use of the
MSK estimates which provide more precise quantification
of non-Gaussian diffusion in low-diffusivity regions (c.f.
Figure 5). In addition, MSK can be used to regularize the full
DKI providing more robust kurtosis tensor derived metrics
(Henriques et al., 2021). In future studies, DIPY can provide a
useful framework for the comparison of all these different noise
and artefact suppression techniques and for the development of
novel strategies.

As with other techniques based on the diffusion-weighted
signal cumulant expansion, DKI estimates may be biased
by high-order-term effects not considered by the expansion
truncation (Chuhutin et al., 2017). While higher-order-effect in
diffusion tensor metrics are minimized by DKI (c.f. Figure 1B),
these can introduce the deviations between kurtosis tensor
estimates and their ground truth values. Despite these accuracy
issues, fitted kurtosis tensors still present a fair description
of the 3D information of the kurtosis tensor as shown in
Figure 1C. Although DKI may provide robust information from

microstructural model fitting (Fieremans et al., 2011; Jespersen,
2018; Jespersen et al., 2018), it is important to note that
the higher-order-term biases on DKI can propagate to DKI-
based microstructural estimates. Therefore, in future studies
it will be of interest to combine our implemented strategies
to the full analytical derivations of different microstructural
models. For instance, the more robust DKI-based estimates
could be used as the initial guess estimates for the more
complex non-linear fitting procedures required by some current
microstructural models. Moreover, we expect that our DKI
microstructural models could be expanded to remove some of
the model constraints assumed by WMTI and SMT2 models
(e.g., incorporating tissue dispersion and removing the lower
intra-cellular diffusivity constraint of the WMTI model (Jelescu
et al., 2016; Jespersen, 2018; Jespersen et al., 2018; Novikov et al.,
2018b).

While DKI can provide additional information to DTI,
the non-Gaussian diffusion information provided by single
diffusion encoding (SDE) multi-shell acquisitions can originate
from multiple sources, and thus limiting kurtosis specificity
(Szczepankiewicz et al., 2016; Henriques et al., 2020a). For
example, kurtosis decreases in gradual degeneration processes
(e.g., healthy ageing, Alzheimer’s and Parkison’s diseases,
multiple sclerosis) are typically attributed to a reduction in
individual fibers’ diffusion anisotropy (Falangola et al., 2008;
Wang et al., 2011; Struyfs et al., 2015; Andersen et al.,
2020). On the other hand, kurtosis increases in more abrupt
damaged microstructural tissues (e.g., ischemia, traumatic
brain injury) can occur due to cytogenic and vasogenic
effects (Hui et al., 2012; Zhuo et al., 2012). To increase
the specificity of kurtosis, several studies have used advanced
diffusion encoding sequences to decouple different kurtosis
sources (e.g., Szczepankiewicz et al., 2016, 2020; Westin
et al., 2016; Topgaard, 2017; Henriques et al., 2020a,b).
Due to the high potential of these techniques, procedures
for reconstructing diffusion-weighted data acquired from
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TABLE 1 | Details of numerical simulations used for DKI Unit Testing Numerical-a brief description of each simulations, the simulation compartmental diffusion parameters

(where AD(m) , RD(m) , f (m) , φ(m) , and θ (m) are the axial diffusivity, radial diffusivity, water fraction, polar orientation angle and azimuthal orientation angle of a given

compartment m), and the checks preformed are presented on the left, middle and right columns, respectively.

Simulations G.T. parameters Tests

Isotropic tensors

(2 compartments)

AD(1) = RD(1) = 0.99

f (1) = 0.5

1) Check if MK, RK, AK, MKT, MSK, and

directional kurtosis samples are equal to the

G.T. isotropic kurtosis value of 0.4581;

AD(2) = RD(2) = 2.26

f (2) = 0.5
2) Check that KFA = 0;

3) Check that the maximum kurtosis calculation

procedure does not generate an error (note that

isotropic kurtosis does not have a maximum);

Single fiber

(2 compartments)

AD(1) = 0.99,

RD(1) = 0,

f (1) = 0.49

1) Check if rotated Kurtosis tensor W̃

have only the following non-zero elements:

W̃1111 = 1.7067, W̃2222 = W̃3333 = 0.800,

W̃1122 = W̃1133 = 0.3897, W̃2233 = 0.2670

AD(2) = 2.26,

RD(2) = 0.87,

f (2) = 0.51

2) Test if the direction of maximum kurtosis is

perpendicular to the main fiber direction

Henriques et al. (2015);

θ1 = θ2 = rand

φ1 = φ2 = rand

3) Test if the value of maximum apparent

kurtosis is equal to RK;

Henriques et al. (2015)
4) Test if WMTI fitted parameters matches their

G.T. values

Crossing fibers

(4 compartments =

2 intra-cellular +

2 extra-cellular)

AD(1) = AD(3) = 0.99

RD(1) = RD(3) = 0

f (1) = f (3) = 0.245

1) Check if estimated Dij and Wijkl elements

for all DKI fitting procedures (OLS, WLS, NLS,

RESTORE) match the ground truth parameters

given by Equations (23, 24);

AD(2) = AD(4) = 2.23

RD(2) = RD(4) = 0.87

f (2) = f (4) = 0.255

2) Check if rotated Kurtosis tensor W̃ have

the same values of a reference W generated

for a scenario in which the D is already aligned

to the cartesian axis x, y, and z;

θ1 = θ2 = 80o

φ1 = φ2 = 10o
3) Check if MK, AK, and RK numerical solutions

match their analytical solutions;

θ3 = θ4 = 20o

φ3 = φ4 = 30o

4) Test if the direction of maximum apparent

kurtosis is perpendicular to both

fibers Henriques et al. (2015)

Fibers crossing at 90o

(4 compartments=

2 intra-cellular +

2 extra-cellular)

(same diffusivities as above)

θ1 = θ2 = 90o

φ1 = φ2 = 0o

θ3 = θ4 = 20o

φ3 = φ4 = 30o

1) Check if MK matches the values of the previous

simulation (Note that fibers crossing at 90o

has a prolate diffusion tensor which corresponds

to MK analytical solution singularity)

Two crossing

compartments

AD(1) = AD(2) = 1.7

RD(1) = RD(2) = 0.3

f (1) = f (2) = 0.5

1) Check if KFA for this scenario is equal to
√

(13/5) (Glenn et al., 2015b)

advanced diffusion sequences are currently being incorporated
in DIPY.

The present work focused on the use kurtosis to probe
microstructural and biophysical properties of the tissue in
different locations within the white matter. However, DKI
can also provide information to identify the trajectories of
white matter bundles through the brain, connecting local or
remote parts of the brain to each other through computational

tractography (Lazar et al., 2008; Jensen et al., 2014; Glenn et al.,
2015a, 2016; Henriques et al., 2015). To implement the DKI-
based tractography in DIPYwewould require an implementation
of an analytical solution that relates the diffusion and kurtosis
tensors to the tissue orientation distribution function (ODF).
This will be included in future releases of DIPY. For the time
being, DIPY provides many other methods to compute ODFs,
including from DTI, as well as from constrained spherical
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TABLE 2 | Some freely available software libraries that implements DKI.

Software License Language Micro? ODF? References

Designer5 Mozilla public license Python (also requires MATLAB,

mrtrix, and FSL).

Yes No Ades-Aron et al., 2018

pyDesigner6 Mozilla Public license Python (Also requires FSL and

mrtrix)

Yes Yes Jensen et al., 2005, 2016; Jensen and

Helpern, 2010; Fieremans et al., 2011; Tabesh

et al., 2011; Glenn et al., 2015b; Ades-Aron

et al., 2018; McKinnon et al., 2018; Moss et al.,

2019; Moss and Jensen, 2021

mrtrix7 Mozilla public license C/C++ No No Tournier et al., 2019

Diffusion kurtosis estimator

(DKE)8
Custom MATLAB Yes Yes Tabesh et al., 2011

DIPY9 BSD Python Yes No Garyfallidis et al., 2014

The table specifies the license and programming language of implementation, whether the software implements DKI-based microstructure models and DKI-based orientation distribution

functions (ODF) and the relevant references to cite when using the software.

deconvolution (Tournier et al., 2007) (including a multi-shell
variant of this method; Jeurissen et al., 2014).
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