Developmental changes in the serial position function for different

Stanford University
Reading \& Dyslexia Research Program

Grace Adebogun ${ }^{1,2}$, Kelly Wentzlof ${ }^{2}$, Jason D. Yeatman ${ }^{1,2}$, Maha Ramamurthy ${ }^{1,2}$

Division of Developmental-Behavioral Pediatrics, School of Medicine, Stanford University, Stanford, CA. ${ }^{1}$ Graduate School of Education, Stanford University, Stanford, CA 2

Background

- Previous research has relied on the multi-element processing task to examine how various elements (i.e., letters, numbers, and other symbols) are visually processed within a string ${ }^{1,2}$.

For letters and numbers, the SPF is W-shaped; for objects, it is inverted U-shaped; and for pseudo-fonts, it is a shape in between.

$\stackrel{3}{\mathbf{B}^{3}}{ }^{2}{ }^{4}$

There is a moderate but significant correlation between task performance across

Discussion and Conclusion

- While task performance does significantly increase with age, the shapes of each SPF remain the same for both adults and children.
- Similar to Tydgat and Grainger (2009), we observe that the SPF for objects (namable symbols) is inverted U-shaped. In addition, we observe that the SPF for pseudo-fonts (non-namable symbols) is a shape between that of letters and objects.
- Children show a moderate but significant correlation between task performance and reading ability (WJ) across all visual elements, suggesting that the processing of different visual elements may be related to reading ability. Notably, performance in the multi-object processing task showed no correlation with TOWRE and CTOPP while performance in the multi-pseudo-font processing task did correlate with TOWRE.
- We hypothesize that children (beginning readers) should process pseudo-fonts similarly to letters, whereas adults (skilled readers) should show no correlation between reading ability and task performance for objects and pseudo-fonts. A larger sample size of adult participants is necessary to report correlations.

1. Our goal is to administer this task to 180 children.
2. We aim to recruit more children with dyslexia to begin examining the impact that reading deficits may have on the ability to process all visual elements.
Corresponding author: adebogn@astanford.edu

References

