Developmental changes in the serial position function for different visual elements.

Grace Adeboğün1,2, Kelly Wentzlof2, Jason D. Yeatman1,2, Maha Ramamurthy1,2

Division of Developmental-Behavioral Pediatrics, School of Medicine, Stanford University, Stanford, CA.1
Graduate School of Education, Stanford University, Stanford, CA,2

Background

- Previous research has relied on the multi-element processing task to examine how various elements (i.e., letters, numbers, and other symbols) are visually processed within a string.2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults (n=14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender F/M/Other</td>
<td>24.5 (4.96)</td>
<td>7.61</td>
</tr>
<tr>
<td>WJ Basic Reading Score</td>
<td>101.3 (12.5)</td>
<td>107.2 (13.7)</td>
</tr>
<tr>
<td>TOWRE Index*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTOPP Rapid Symbol Naming***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults (n=14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender F/M/Other</td>
<td>3.75 (1.74)</td>
<td>1.25</td>
</tr>
<tr>
<td>WJ Basic Reading Score</td>
<td>24.0 (15.1)</td>
<td>24.0 (15.1)</td>
</tr>
<tr>
<td>TOWRE Index*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTOPP Rapid Symbol Naming***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children (n=48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender F/M/Other</td>
<td>10.0 (1.59)</td>
<td>24.20</td>
</tr>
<tr>
<td>WJ Basic Reading Score</td>
<td>99.6 (15.9)</td>
<td>94.2 (17.3)</td>
</tr>
<tr>
<td>TOWRE Index*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTOPP Rapid Symbol Naming***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Does the serial position function vary across different visual categories as reported in previous literature?
2. Do the shapes of these functions change with age and reading ability?

Methods

Participants completed a set of standardized reading assessments:
- Woodcock-Johnson IV (WJ)
- Test of Word Reading Efficiency (TOWRE)
- Wechsler Abbreviated Scale of Intelligence (WASI-II)
- Comprehensive Test of Phonological Processing (CTOPP-2)

Multi-Element Processing Task
- A string of 6 elements flashed for 240ms. Participants were required to report the element in the post-cued position from a set of 10 choices.
- Eyes were tracked to ensure fixation while elements were present.
- Trials ended and were repeated after a fixation break.
- Target elements span +/-1.74° on either side of fixation.

Results

- Task performance is highest for numbers, followed by letters, objects, and then pseudo-fonts.
- For letters and numbers, the SPF is W-shaped; for objects, it is inverted U-shaped; and for pseudo-fonts, it is a shape in between.

Discussion and Conclusion

- While task performance does significantly increase with age, the shapes of each SPF remain the same for both adults and children.

- Similar to Tydgat and Grainger (2009), we observe that the SPF for objects (namable symbols) is inverted U-shaped. In addition, we observe that the SPF for pseudo-fonts (non-namable symbols) is a shape between that of letters and objects.

- Children show a moderate but significant correlation between task performance and reading ability (WJ) across all visual elements, suggesting that the processing of different visual elements may be related to reading ability. Notably, performance in the multi-object processing task showed no correlation with TOWRE and CTOPP while performance in the multi-font processing task did correlate with TOWRE.

- We hypothesize that children (beginning readers) should process pseudo-fonts similarly to letters, whereas adults (skilled readers) should show no correlation between reading ability and task performance for objects and pseudo-fonts. A larger sample size of adult participants is necessary to report correlations.

Next Steps

1. Our goal is to administer this task to 180 children.
2. We aim to recruit more children with dyslexia to begin examining the impact that reading deficits may have on the ability to process all visual elements.

References

This work was supported by trainee research grants from the Stanford Hill-Rex and Bio-X Programs to G.A.

Corresponding author: adeboogun@stanford.edu

Notes:
- *Composite word and nonword reading scores
- **Composite pseudoword reading scores
- ***Composite single letter and digit naming scores